cho tam giác ABC vuông tại A , đường cao AH . Trên cạnh BC lấy điểm D sao cho BD = BA a) Chứng minh góc BAD = BDA b) Chứng minh AD là tia phân giác của góc HAC c) Vẽ DK AC ( K AC) . Chứng minh AH = AK d) Chứng minh AB + AC < BC + 2AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Diện tích hình tam giác vuông là:
2,5 x 1,5 : 2 = 1,875 ( dm )
Đáp số: 1,875dm
![](https://rs.olm.vn/images/avt/0.png?1311)
UCLN(a,b) = 12; BCNN(a,b) = 180 ---> a.b = 12.180 = 2160
Mà 2700 = (2^2)(3^3)(5^2) { a = 2^2.3= 12 ; b = (2^2)(3^2).5 = 180
{ a = 2^2.(3^2) = 36 ; b = (2^2).3.5 = 60
{ a = 180 ; b = 12
{ a = 60 ; b = 36
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{3}{6}-\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=-\dfrac{2}{6}\)
\(\Rightarrow x=-\dfrac{2}{6}-\dfrac{1}{3}\)
\(\Rightarrow x=-\dfrac{2}{3}\)
b) \(\left(\dfrac{3}{8}-\dfrac{1}{5}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\)
\(\Rightarrow\left(\dfrac{15}{40}-\dfrac{8}{40}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\)
\(\Rightarrow\dfrac{7}{40}+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\)
\(\Rightarrow\dfrac{5}{8}-x=\dfrac{1}{5}-\dfrac{7}{40}\)
\(\Rightarrow\dfrac{5}{8}-x=\dfrac{1}{40}\)
\(\Rightarrow x=\dfrac{5}{8}-\dfrac{1}{40}\)
\(\Rightarrow x=\dfrac{3}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x=7-\dfrac{2}{5}+1,62=8,22x=7−52+1,62=8,22
b) x=4 \dfrac{3}{5}+\dfrac{1}{5}-\dfrac{1}{2}=4 \dfrac{3}{10}x=453+51−21=4103
c) 2 x-x=\dfrac{3}{5}+\dfrac{4}{7}2x−x=53+74
x=\dfrac{41}{35}x=3541
d) x=3 \dfrac{1}{2}-\dfrac{5}{7}+\dfrac{1}{13}-0.25x=321−75+131−0.25
x=2 \dfrac{223}{364}x=2364223
x=7-\dfrac{2}{5}+1,62=8,22x=7−52+1,62=8,22
b) x=4 \dfrac{3}{5}+\dfrac{1}{5}-\dfrac{1}{2}=4 \dfrac{3}{10}x=453+51−21=4103
c) 2 x-x=\dfrac{3}{5}+\dfrac{4}{7}2x−x=53+74
x=\dfrac{41}{35}x=3541
d) x=3 \dfrac{1}{2}-\dfrac{5}{7}+\dfrac{1}{13}-0.25x=321−75+131−0.25
x=2 \dfrac{223}{364}x=2364223
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
a)\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}(21+1,5)⋅x=51
2 \cdot x=\dfrac{1}{5}2⋅x=51
x=\dfrac{1}{5}: 2x=51:2
x=\dfrac{1}{10} x=101
b) \left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}(−153+x):1312=261
-1 \dfrac{3}{5}+x=\dfrac{13}{6} \cdot \dfrac{12}{13}−153+x=613⋅1312
x=2+1 \dfrac{3}{5}x=2+153
x=3 \dfrac{3}{5} x=353
c) \left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}(x:231)⋅71=8−3
x \cdot \dfrac{3}{7} \cdot \dfrac{1}{7}=\dfrac{-3}{8}x⋅73⋅71=8−3
x=\dfrac{-3}{8}: \dfrac{3}{49}x=8−3:493
x=\dfrac{-49}{8}=-6 \dfrac{1}{8}x=8−49=−681
d) \dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)7−4⋅x+57=81:(−132)
\dfrac{-4}{7} x+\dfrac{7}{5}=\dfrac{1}{8} \cdot \dfrac{-3}{5}7−4x+57=81⋅5−3
-\dfrac{4}{7} x=\dfrac{-3}{40}-\dfrac{7}{5} \\ x=\dfrac{-59}{40}: \dfrac{-4}{7}=\dfrac{413}{160}=2 \dfrac{93}{160}−74x=40−3−57x=40−59:7−4=160413=216093
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114.
b) B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152.
a) \mathrm{A}=\left[\dfrac{2}{7}\left(\dfrac{1}{4}-\dfrac{1}{3}\right)\right]:\left[\dfrac{2}{7}\left(\dfrac{1}{3}-\dfrac{2}{5}\right)\right]=\left(\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{1}{3}-\dfrac{2}{5}\right)=1 \dfrac{1}{4}A=[72(41−31)]:[72(31−52)]=(41−31):(31−52)=141.
b) \mathrm{B}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{2}{7}\right)}{\dfrac{1}{5}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)-\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{1}{3}\right)}{\left(\dfrac{1}{5}-\dfrac{1}{3}\right)\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=1 \dfrac{11}{52}B=51(72+31)−31(72+31)43(51−72−31+72)=(51−31)(72+31)43(51−31)=15211