trong các số sau số chia hết cho 2 và 5 là mấy
324,248,2020,2025
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m.\left(\dfrac{14}{3}+\dfrac{14}{15}+...+\dfrac{14}{195}\right)=1\)
=> \(m.7.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{13.15}\right)=1\)
=> \(7m.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)=1\)
=> \(7m.\left(1-\dfrac{1}{15}\right)=1\)
=> \(\dfrac{7m.14}{15}=1\)
=> \(m=\dfrac{15}{98}\)
`3^3 - 2^2 . 5 + 125 : 5`
`= 27 - 4 . 5 +` \(\dfrac{125}{52}\)
`= 27 - 20 +` \(\dfrac{125}{52}\)
`= 7 +` \(\dfrac{125}{52}\)
`=` \(\dfrac{7.52+125}{52}\)
`=` \(\dfrac{489}{52}\)
`(x + 7) - 25 = 13`
`=> x +7 = 13 + 25`
`=> x+ 7 = 38`
`=> x = 38 - 7`
`=> x = 31`
Vậy `x=31`
`(7x - 11)^3 = 2^5 . 5^2 + 100`
`=> (7x - 11)^3 = 32 . 25 + 100`
`=> (7x - 11)^3 = 800 + 100`
`=> (7x - 11)^3 = 900`
`=> 7x - 11 =` \(\sqrt[3]{900}\)
`=> 7x = 11 +` \(\sqrt[3]{900}\)
`=> x =` \(\dfrac{11+\sqrt[3]{900}}{7}\)
Vậy ...
Sửa đề:
\(\left(7x-11\right)^2=2^5.5^2+100\)
\(\left(7x-11\right)^2=32.25+100\)
\(\left(7x-11\right)^2=800+100\)
\(\left(7x-11\right)^2=900\)
\(\left(7x-11\right)^2=30^2\)
\(\Rightarrow7x-11=30\)
\(7x=30+11\)
\(7x=41\)
\(x=41\div7\)
\(x=\dfrac{41}{7}\)
Vậy \(x=\dfrac{41}{7}\)
a: \(\left|0,5x-2\right|-\left|x+\dfrac{2}{3}\right|=0\)
=>\(\left|\dfrac{1}{2}x-2\right|=\left|x+\dfrac{2}{3}\right|\)
=>\(\left[{}\begin{matrix}\dfrac{1}{2}x-2=x+\dfrac{2}{3}\\\dfrac{1}{2}x-2=-x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x=2+\dfrac{2}{3}=\dfrac{8}{3}\\\dfrac{3}{2}x=-\dfrac{2}{3}+2=\dfrac{4}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{8}{3}:\dfrac{-1}{2}=\dfrac{8}{3}\cdot\left(-2\right)=-\dfrac{16}{3}\\x=\dfrac{4}{3}:\dfrac{3}{2}=\dfrac{8}{9}\end{matrix}\right.\)
b:
\(2x-\left|x+1\right|=\dfrac{1}{4}\)
=>\(\left|x+1\right|=2x-\dfrac{1}{4}\)
=>\(\left\{{}\begin{matrix}2x-\dfrac{1}{4}>=0\\\left(2x-\dfrac{1}{4}\right)^2=\left(x+1\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{8}\\\left(2x-\dfrac{1}{4}-x-1\right)\left(2x-\dfrac{1}{4}+x+1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{8}\\\left(x-\dfrac{5}{4}\right)\left(3x+\dfrac{3}{4}\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{4}\)
c: \(3x-\left|x+15\right|=\dfrac{5}{4}\)
=>\(\left|x+15\right|=3x-\dfrac{5}{4}\)
=>\(\left\{{}\begin{matrix}3x-\dfrac{5}{4}>=0\\\left(3x-\dfrac{5}{4}\right)^2=\left(x+15\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(3x-\dfrac{5}{4}-x-15\right)\left(3x-\dfrac{5}{4}+x+15\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(2x-16,25\right)\left(4x+\dfrac{55}{4}\right)=0\end{matrix}\right.\Leftrightarrow x=8,125\)
d: \(\dfrac{3}{2}-\left|\dfrac{5}{4}+3x\right|=\dfrac{1}{4}\)
=>\(\left|3x+\dfrac{5}{4}\right|=\dfrac{3}{2}-\dfrac{1}{4}=\dfrac{5}{4}\)
=>\(\left[{}\begin{matrix}3x+\dfrac{5}{4}=\dfrac{5}{4}\\3x+\dfrac{5}{4}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=0\\3x=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{6}\end{matrix}\right.\)
e: \(\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\)
=>\(\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=-3x+\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x-3x=-\dfrac{1}{2}+1\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)
f: \(\left|2x-1\right|=\left|x+\dfrac{1}{3}\right|\)
=>\(\left[{}\begin{matrix}2x-1=x+\dfrac{1}{3}\\2x-1=-x-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=\dfrac{1}{3}+1\\2x+x=-\dfrac{1}{3}+1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\3x=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=\dfrac{2}{9}\end{matrix}\right.\)
Xét tổng: S = 1 + 2 + 3 + ... + x
Số lượng số hạng: (x - 1) : 1 + 1 = x (số hạng)
`=>S=((x+1)*x)/2`
\(=>\dfrac{\left(x+1\right)x}{2}=820\\ =>x\left(x+1\right)=1640\\ =>x^2+x-1640=0\\ =>\left(x^2-40x\right)+\left(41x-1640\right)=0\\ =>x\left(x-40\right)+41\left(x-40\right)=0\\ =>\left(x+41\right)\left(x-40\right)=0\\ =>\left[{}\begin{matrix}x=40\\x=-41\end{matrix}\right.\)
Mà x > 0 => x = 40
Số số hạng là \(\dfrac{\left(2x+1-3\right)}{2}+1=\dfrac{2x-2}{2}+1=x-1+1=x\left(số\right)\)
Tổng của dãy số là \(\dfrac{x\left(2x+1+3\right)}{2}=x\left(x+2\right)\)
Theo đề, ta có: x(x+2)=624
=>\(x^2+2x-624=0\)
=>(x+26)(x-24)=0
=>\(\left[{}\begin{matrix}x=-26\\x=24\end{matrix}\right.\)
2020
2020