K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

A B C D M P N E F

Ta có M, N, P là trung điểm của AB; AC; BC nên

MN là đường trung bình của tg ABC => MN//BC

NP là đường trung bình của tg ABC => NP//AB

MP là đường trung bình của tg ABC => MP//AC

Xét tg PMD có 

PD=PM => tg PMD cân tại P \(\Rightarrow\widehat{PMD}=\widehat{PDM}\) (góc ở đáy tg cân)

Mà MN//BC (cmt) \(\Rightarrow\widehat{NMD}=\widehat{PDM}\) (góc so le trong)

\(\Rightarrow\widehat{PMD}=\widehat{NMD}\) => MD là phân giác của \(\widehat{NMP}\) (1)

Xét tg PNE có

PE=PN => tg PNE cân tại P \(\Rightarrow\widehat{PNE}=\widehat{PEN}\) (góc ở đáy tg cân)

Mà MN//BC (cmt) \(\Rightarrow\widehat{MNE}=\widehat{PEN}\) (góc so le trong)

\(\Rightarrow\widehat{PNE}=\widehat{MNE}\) => NE là phân giác của \(\widehat{MNP}\) (2)

Xét tg NFP có

NF=PE=PN => tg NFP cân tại N\(\Rightarrow\widehat{NPF}=\widehat{NFP}\) (góc ở đáy tg cân)

Mà MP//AC (cmt) \(\Rightarrow\widehat{MPF}=\widehat{NFP}\) (góc so le trong)

\(\Rightarrow\widehat{NPF}=\widehat{MPF}\) => PE là phân giác của \(\widehat{MPN}\) (3)

Xét tg DEF

Từ (1) (2) (3) => DM; NE; PF đồng quy (trong tg 3 đường phân giác đông quy)

 

16 tháng 5 2022

Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

 

        \(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

 

Vì \(a\) là  số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp . 

 

\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.

 

\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn . 

 

Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .

 

Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))

 

Vậy : \(a+b+c+d\) là hợp số .

29 tháng 3 2024

Xét : (�2+�2+�2+�2)−(�+�+�+�)(a2+b2+c2+d2)(a+b+c+d)

        =�(�−1)+�(�−1)+�(�−1)+�(�−1)=a(a1)+b(b1)+c(c1)+d(d1)

Vì a là  số nguyên dương nên �,(�−1)a,(a1) là hai số tự nhiên liên tiếp . 

⇒�(�−1)a(a1) chia hết cho 2. Tương tự ta có : �(�−1);�(�−1);�(�−1)b(b1);c(c1);d(d1) đều chia hết cho 2.

⇒�(�−1)+�(�−1)+�(�−1)+�(�−1)a(a1)+b(b1)+c(c1)+d(d1) là số chẵn . 

Lại có : �2+�2=�2+�2⇒�2+�2+�2+�2=2(�2+�2)a2+c2=b2+d2a2+b2+c2+d2=2(b2+d2) là số chẵn .

Do đó : �+�+�+�a+b+c+d là số chẵn mà �+�+�+�>2a+b+c+d>2 (Do �,�,�,�∈N∗a,b,c,dN)

Vậy : �+�+�+�a+b+c+d là hợp số .

DD
17 tháng 5 2022

\(f\left(x\right)=x^4+6x^3+11x^2+6x=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) 

\(x\) là số nguyên nên \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích của \(4\) số nguyên liên tiếp nên trong đó có nhất một số chia hết cho \(4\), một số chia hết cho \(3\), một số chia hết cho \(2\) nhưng không chia hết cho \(4\) nên \(f\left(x\right)\) chia hết cho \(2.3.4=24\). 

Để \(f\left(x\right)\) chia hết cho \(5\) thì \(x,x+1,x+2,x+3\) có một số chia hết cho \(5\). 

Có \(72=2.4.9\) nên để \(f\left(x\right)\) chia hết cho \(72\) thì trong \(4\) số \(x,x+1,x+2,x+3\) có một số chia hết cho \(9\) hoặc hai số chia hết cho \(3\), suy ra \(x\) chia hết cho \(3\). 

21 tháng 6 2022

\(a,12x=4x-30\Leftrightarrow8x=-30\Leftrightarrow x=-\dfrac{15}{4}\)

\(b,2x-5=x-1\Leftrightarrow2x-x=-1+5\Leftrightarrow x=4\)

\(c,2-5x=5x-10\Leftrightarrow-10x=-12\Leftrightarrow x=\dfrac{6}{5}\)

\(d,9x-6=1x-5\Leftrightarrow8x=1\Leftrightarrow x=\dfrac{1}{8}\)

\(e,2x-5=2x-1\Leftrightarrow2x-2x=-1+5\Leftrightarrow0x=4\) (Vô lí)\(\Rightarrow x\in\varnothing\)

 

16 tháng 5 2022

a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)

16 tháng 5 2022

b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)

16 tháng 5 2022

P(x) = X7 - 80X6 + 80X5 - 80X4 + ... +80X + 15

=X7 - 79X6  - X6+ 79X5  + X5- 79X4 -X4 + ... +79X +X+ 15

Khi X = 79 ta có 

P(x) = 797 - 79.796  - 796+ 79.795  + 795- 79.794 -794 + ... +79.79 +79+ 15

= 797 - 797 - 79+ 796 +795 - 795-794 +794 + ... - 792 + 792 + 79 + 15

= 79 +15 

= 94

Mọi thắc mắc có thể nhắn tin chat 

 

16 tháng 5 2022

a/ Xét tg vuông ADH và tg vuông ADE có

AD chung

^DAH = ^DAE (gt)

=> tg ADH = tg ADE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => DH=DE

b/ Ta có

\(KE\perp AC;CH\perp AK\) => D là trực tâm của tg AKC => \(AD\perp KC\) (trong tg 3 đường cao đồng quy)

Mà AD là phân giác của ^HAC

=> tg AKC cân tại A (Tam giác có đường cao đồng thời là đường phân giác thí tg đó là tg cân)

c/

Xét tg vuông AKE và tg vuông ACH có

^AKE = ^ACH (cùng phụ với KAC) (1)

tg AKC cân (cmt) => AK=AC

=> tg AKE = tg ACH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => KE=CH (2)

Ta có DH=DE (cmt) => tg DHE cân tại D => ^KEH = ^CHE (góc ở đáy tg cân) (3)

Từ (1) (2) (3) => tg KHE = tg CEH (g.c.g)

d/ 

Ta có BC=BH+CH=8+32=40 cm

Xét tg vuông ACH và tg vuông ABC có ^ACB chung

=> tg ACH đồng dạng với tg ABC (g.g.g)

\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\Rightarrow AC^2=CH.BC=32.40\Rightarrow AC=16\sqrt{5}\) cm

e/

Ta có \(\widehat{C}=30^o\Rightarrow\widehat{KAC}=60^o\Rightarrow\widehat{AKC}=\widehat{ACK}=60^o\)

=> tg AKC là tg đều => AK=AC=KC

Xét tg AKC có

AP; KE; CH là đường cao của tg AKC => AP; KE; CH là đường trung tuyến của tg AKC => E là trung điểm của AC; H là trung điểm của AK và P là trung điểm của KC

=> PE; EH; HP là đường trung bình của tg AKC

=> PE=EH=HP=AK/2=KC/2=AC/2

=> tg HEP là tg đều