K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

A B C 6 10 H D M N

a, Xét tam giác ABC vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm

* Áp dụng hệ thức : 

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm

* Áp dụng hệ thức : 

\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm 

\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm 

Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm 

Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2

11 tháng 6 2021

b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )

\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)

\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm 

\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm 

Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có : 

\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm

11 tháng 6 2021

a, \(P=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)

\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\frac{3\sqrt{x}-9}{x-9}=\frac{3}{\sqrt{x}+3}\)

b, Ta có : \(\sqrt{x}+3\ge3\Rightarrow P=\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\)

Dấu ''='' xảy ra khi \(\sqrt{x}+3=3\Leftrightarrow x=0\)

Vậy GTLN P là 1/3 khi x = 0 

11 tháng 6 2021

Điều kiện: \(x,y\ge0;\sqrt{x}\ne\sqrt{y}-3.\)

\(A=\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}\)

\(A=\frac{\left(\sqrt{x}-\sqrt{y}+3\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)

11 tháng 6 2021

\(\sqrt{x^2+1}=-3\)

\(\Rightarrow x^2+1=9\)

Suy ra : x^2 = 8

Suy ra : \(x=2\sqrt{2}\)hoặc \(x=-2\sqrt{2}\)

11 tháng 6 2021

1.392869546

11 tháng 6 2021

1,392869546 nha

DD
11 tháng 6 2021

\(A=\sqrt{23+3\sqrt{5}}\)

\(\sqrt{2}A=\sqrt{46+6\sqrt{5}}=\sqrt{45+2.3\sqrt{5}+1}=\sqrt{\left(3\sqrt{5}\right)^2+2.3\sqrt{5}+1^2}\)

\(=\sqrt{\left(3\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)

\(\Rightarrow A=\frac{3\sqrt{5}+1}{\sqrt{2}}=\frac{3\sqrt{10}}{2}+\frac{\sqrt{2}}{2}\)

11 tháng 6 2021

=\(\sqrt{3^2+2.3.\sqrt{5}+\sqrt{5^2}}\)

\(=\sqrt{\left(3+\sqrt{5}\right)^2}\)

\(=\left[3+\sqrt{5}\right]\)(dấu ngoặc vuông thay = dấu giá trị tuyệt đối nhé.)

\(=3+\sqrt{5}\)

DD
11 tháng 6 2021

\(A=\sqrt{7-3\sqrt{5}}\)

\(\sqrt{2}A=\sqrt{14-6\sqrt{5}}=\sqrt{9-2.3.\sqrt{5}+5}=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)

\(\Rightarrow A=\frac{3-\sqrt{5}}{\sqrt{2}}=\frac{3\sqrt{2}}{2}-\frac{\sqrt{10}}{2}\)

11 tháng 6 2021

\(=\sqrt{3^2-2.3\sqrt{5}+\sqrt{5^2}}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)(phương pháp đưa về hằng đẳng thức)

\(=\left[3-\sqrt{5}\right]\)(thay '[...] bằng dấu g/trị tuyệt đối)

\(=3-\sqrt{5}\)

11 tháng 6 2021

a, \(\sqrt{3+2\sqrt{2}}=\sqrt{\sqrt{2}^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+1\right|=\sqrt{2}+1\)

b, \(\sqrt{3-2\sqrt{2}}=\sqrt{\sqrt{2}^2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

c, \(\sqrt{8-2\sqrt{15}}=\sqrt{\sqrt{5}^2-2\sqrt{5.3}+\sqrt{3}^2}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)

DD
11 tháng 6 2021

\(\sqrt{2+\sqrt{3}}=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}=\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\)