K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2024

a) ∆' = (-m)² - (2m - 1)

= m² - 2m + 1

= (m - 1)² ≥ 0 với mọi m ∈ R

Vậy phương trình luôn có hai nghiệm với mọi m ∈ R

b) Theo hệ thức Vi-ét, ta có:

x₁ + x₂ = 2m

x₁x₂ = 2m - 1

(x₁ + x₂)² - 4x₁x₂ = -4

(2m)² - 4(2m - 1) = -4

4m² - 8m + 4 + 4 = 0

4m² - 8m + 8 = 0 (*)

∆' = (-4)² - 4.8 = -16 < 0

⇒ (*) vô nghiệm

Vậy không tìm được m thỏa mãn (x₁ + x₂)² - 4x₁x₂ = -4

24 tháng 4 2024

                          Giải

Gọi số ngày mà tổ đó phải hoàn thành theo kế hoạch là: \(x\) (ngày)

Điều kiện: \(x\) \(\in\) N

Số ngày thực tế đội đó hoàn thành là: \(x\) - 2 (ngày)

Số áo mỗi ngày đội đó làm được theo kế hoạch là: \(\dfrac{1200}{x}\) (chiếc áo)

Số áo mỗi ngày mà đội đó làm được trên thực tế là: \(\dfrac{1200}{x-2}\) (chiếc áo)

Theo bài ra ta có phương trình: 

               \(\dfrac{1200}{x-2}\) - \(\dfrac{1200}{x}\) = 20

                \(\dfrac{60}{x-2}\) - \(\dfrac{60}{x}\) = 1

                  60\(x\) - 60\(x\) + 120 = \(x^2\) - 2\(x\) 

                  \(x^2\) - 2\(x\) + 1 = 121

                   (\(x\) - 1)2 = 112

                \(\left[{}\begin{matrix}x-1=11\\x-1=-11\end{matrix}\right.\)

                \(\left[{}\begin{matrix}x=12\\x=-10\end{matrix}\right.\)

Vì \(x\) > 0 nên \(x\) = 12

Kêt luận số ngày mà đội đó phải hoàn thành theo kế hoạch là 12 ngày. 

             

 

 

 

24 tháng 4 2024

Gọi thời gian tổ may xong áo theo kế hoạch là \(x(\text{ngày};x\in \mathbb{N}^*)\)

Theo kế hoạch thì mỗi ngày tổ may được: \(\dfrac{1200}{x}\) (chiếc áo)

Thời gian tổ may xong trên thực tế là: \(x-2\) (ngày)

Trên thực tế thì mỗi ngày tổ may được: \(\dfrac{1200}{x-2}\) (chiếc áo)

Do cải tiến kỹ thuật nên mỗi ngày tổ may thêm được 20 chiếc áo, khi đó ta có pt:

\(\dfrac{1200}{x}+20=\dfrac{1200}{x-2}\)

\(\Leftrightarrow1200\cdot\left(\dfrac{1}{x-2}-\dfrac{1}{x}\right)=20\)

\(\Leftrightarrow\dfrac{x-\left(x-2\right)}{x\left(x-2\right)}=\dfrac{20}{1200}\)

\(\Leftrightarrow\dfrac{2}{x^2-2x}=\dfrac{1}{60}\)

\(\Rightarrow x^2-2x=120\)

\(\Leftrightarrow x^2-2x-120=0\)

\(\Leftrightarrow\left(x-1\right)^2-121=0\)

\(\Leftrightarrow\left(x-12\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=-10\left(ktm\right)\end{matrix}\right.\)

Vậy theo kế hoạch tổ phải may số áo trên trong 12 ngày.

24 tháng 4 2024

                          Giải

Gọi số ngày mà tổ đó phải hoàn thành theo kế hoạch là: \(x\) (ngày)

Điều kiện: \(x\) \(\in\) N

Số ngày thực tế đội đó hoàn thành là: \(x\) - 2 (ngày)

Số áo mỗi ngày đội đó làm được theo kế hoạch là: \(\dfrac{1200}{x}\) (chiếc áo)

Số áo mỗi ngày mà đội đó làm được trên thực tế là: \(\dfrac{1200}{x-2}\) (chiếc áo)

Theo bài ra ta có phương trình: 

               \(\dfrac{1200}{x-2}\) - \(\dfrac{1200}{x}\) = 20

                \(\dfrac{60}{x-2}\) - \(\dfrac{60}{x}\) = 1

                  60\(x\) - 60\(x\) + 120 = \(x^2\) - 2\(x\) 

                  \(x^2\) - 2\(x\) + 1 = 121

                   (\(x\) - 1)2 = 112

                \(\left[{}\begin{matrix}x-1=11\\x-1=-11\end{matrix}\right.\)

                \(\left[{}\begin{matrix}x=12\\x=-10\end{matrix}\right.\)

Vì \(x\) > 0 nên \(x\) = 12

Kêt luận số ngày mà đội đó phải hoàn thành theo kế hoạch là 12 ngày. 

             

 

 

 

24 tháng 4 2024

        Bài 1:

Theo pytago ta có: HB2 + AH2 = AB2 

          ⇒ HB2 = AB2 - AH2 

              HB2 = 102 -  82 = 36 

              HB = \(\sqrt{36}\) = 6 (cm)

Xét tam giác ABC  và tam giác HBA có:

            \(\widehat{BAC}\) = \(\widehat{BHA}\) = 900

            \(\widehat{ABC}\) = \(\widehat{HBA}\)

⇒ \(\Delta\) ABC \(\sim\) \(\Delta\) HBA (g - g)

⇒ \(\dfrac{AB}{HB}\) = \(\dfrac{BC}{BA}\)

      BC = \(\dfrac{AB}{HB}\) \(\times\) AB 

      BC = \(\dfrac{10.10}{6}\) = \(\dfrac{50}{3}\) (cm)

      SABC = \(\dfrac{1}{2}\)BC \(\times\)  AH  = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{50}{3}\) \(\times\) 8 = \(\dfrac{200}{3}\) (cm2)

Vì M là trung điểm của tam giác ABC nên 

   SABM  = \(\dfrac{1}{2}\) SABC (hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BM = \(\dfrac{1}{2}\) BC)

   SABM = \(\dfrac{200}{3}\).\(\dfrac{1}{2}\) = \(\dfrac{100}{3}\) (cm2)

  SAHB = \(\dfrac{1}{2}\)AH.HB = \(\dfrac{8.6}{2}\) = 24 (cm2)

SAHB + SAHM = SABM

 ⇒ SAHM = SABM - SAHB 

    SAHM = \(\dfrac{100}{3}\) - 24 = \(\dfrac{28}{3}\) (cm2)

Kết luận: BC dài \(\dfrac{50}{3}\) cm; Diện tích tam giác AHM là \(\dfrac{28}{3}\) cm2

  

 

 

 

24 tháng 4 2024

24 tháng 4 2024

dễ mà

24 tháng 4 2024

Giải:

Gọi số phần quà ban đầu là n, từ để bài ta có phương trình:

(n+5)(n-6) = (n+10)(n-10)

<=> n= 70

=> Tổng số hộp sữa= (n=10)(n-10)= 80 x 60  =4800 hộp

 

24 tháng 4 2024

               Bài 1:

Theo pytago ta có: HB2 + AH2 = AB2 

          ⇒ HB2 = AB2 - AH2 

              HB2 = 102 -  82 = 36 

              HB = \(\sqrt{36}\) = 6 (cm)

Xét tam giác ABC  và tam giác HBA có:

            \(\widehat{BAC}\) = \(\widehat{BHA}\) = 900

            \(\widehat{ABC}\) = \(\widehat{HBA}\)

⇒ \(\Delta\) ABC \(\sim\) \(\Delta\) HBA (g - g)

⇒ \(\dfrac{AB}{HB}\) = \(\dfrac{BC}{BA}\)

      BC = \(\dfrac{AB}{HB}\) \(\times\) AB 

      BC = \(\dfrac{10.10}{6}\) = \(\dfrac{50}{3}\) (cm)

      SABC = \(\dfrac{1}{2}\)BC \(\times\)  AH  = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{50}{3}\) \(\times\) 8 = \(\dfrac{200}{3}\) (cm2)

Vì M là trung điểm của tam giác ABC nên 

   SABM  = \(\dfrac{1}{2}\) SABC (hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BM = \(\dfrac{1}{2}\) BC)

   SABM = \(\dfrac{200}{3}\).\(\dfrac{1}{2}\) = \(\dfrac{100}{3}\) (cm2)

  SAHB = \(\dfrac{1}{2}\)AH.HB = \(\dfrac{8.6}{2}\) = 24 (cm2)

SAHB + SAHM = SABM

 ⇒ SAHM = SABM - SAHB 

    SAHM = \(\dfrac{100}{3}\) - 24 = \(\dfrac{28}{3}\) (cm2)

Kết luận: BC dài \(\dfrac{50}{3}\) cm; Diện tích tam giác AHM là \(\dfrac{28}{3}\) cm2

  

 

 

 

24 tháng 4 2024

23 tháng 4 2024

Tính Ừ mỗi xẻ

 

1: Thay x=9 vào B, ta được:

\(B=\dfrac{1}{3-1}=\dfrac{1}{2}\)

2: P=A-B

\(=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\sqrt{x}+1+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)