Cho tam giác ABC vuông góc tại A .Kẻ AH vuông góc với BC (H thuộc BC). BK là tia phân giác của góc B (K thuộc AC) AH cắt B tại I . Chứng minh :
a, Góc AIK = Góc BAH
b, Góc AIK = Góc AKI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C A B K H I
a) Xem lại đề vì nếu bằng nhau => BA//BK vô lí
b) Xét tam giác ABK có: \(\widehat{ABK}+\widehat{BKA}+\widehat{BAK}=180^o\)
Xét tam giác BIH có: \(\widehat{IBH}+\widehat{HIB}+\widehat{IHB}=180^o\)
Mà \(\widehat{ABK}=\widehat{IBH}\)( vì BK là phân giác góc B trong tam giác ABC)
\(\widehat{BAK}=\widehat{BHI}=90^o\)
Suy ra góc BKA=góc HIB mà góc HIB =góc AIK đối đỉnh
=> Góc AIK = góc BKA= góc AKI
Ta thấy : \(\frac{1}{2^2}< \frac{1}{3}\)
\(\frac{1}{2^4}< \frac{1}{3}\)
...
\(\frac{1}{2^{100}}< \frac{1}{3}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}< \frac{1}{3}\)
Vậy \(A< \frac{1}{3}\)
Chúc bạn học tốt :>
A.\(4\)=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)
=> 4A-A=1-\(\frac{1}{2^{100}}\)
=> A=\(\frac{1}{3}\left(1-\frac{1}{2^{100}}\right)=\frac{1}{3}-\frac{1}{3}.\frac{1}{2^{100}}< \frac{1}{3}\)
\(\sqrt{x}\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2-1=0\left(\sqrt{x}>0\right)\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
ĐK: \(x\ge0\)
\(\sqrt{x}.\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
............................. Đấng Ed bảo ko chắc cho lắm nên sai thì sr nhé -,-
\(a)\)\(\left|x-1\right|+\left|x-2\right|+...+\left|x-8\right|=22\)
+) Với \(x\ge8\) ta có :
\(x-1+x-2+...+x-8=22\)
\(\Leftrightarrow\)\(8x-36=22\)
\(\Leftrightarrow\)\(x=\frac{29}{4}\)( không thỏa mãn )
+) Với \(x< 1\) ta có :
\(1-x+2-x+...+8-x=22\)
\(\Leftrightarrow\)\(36-8x=22\)
\(\Leftrightarrow\)\(x=\frac{7}{4}\) ( không thỏa mãn )
Vậy không có x thỏa mãn đề bài
\(b)\)\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=2500\)
+) Với \(x\ge100\) ta có :
\(x-1+x-2+x-3+...+x-100=2500\)
\(\Leftrightarrow\)\(100x-5050=2500\)
\(\Leftrightarrow\)\(x=\frac{151}{2}\) ( không thỏa mãn )
+) Với \(x< 1\) ta có :
\(1-x+2-x+3-x+...+100-x=2500\)
\(\Leftrightarrow\)\(5050-100x=2500\)
\(\Leftrightarrow\)\(x=\frac{51}{2}\) ( không thỏa mãn )
Vậy không có x thỏa mãn đề bài
Bài 2 :
+) Với \(x\ge-1\) ta có :
\(x+1+x+2+...+x+100=605x\)
\(\Leftrightarrow\)\(100x+5050=605x\)
\(\Leftrightarrow\)\(x=10\) ( thỏa mãn )
+) Với \(x< -100\) ta có :
\(-x-1-x-2-...-x-100=605x\)
\(\Leftrightarrow\)\(-100x-5050=605x\)
\(\Leftrightarrow\)\(x=\frac{-1010}{141}\) ( không thỏa mãn )
Vậy \(x=10\)
~ Đấng phắn ~
\(\frac{125^{3.8^4}}{10^{10}}\)
\(=\frac{125^{12288}}{10^{10}}=\frac{\left(5^3\right)^{12288}}{2^{10}.5^{10}}\)
\(=\frac{5^{36864}}{2^{10}.5^{10}}=\frac{5^{36854}}{2^{10}}\)
#
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
Tham khảo nha bn:https://olm.vn/hoi-dap/detail/44057454748.html