a, x/3 = y/4 = z/5 và 2x^2 + 2y^2 - 3z^2 =-100 tìm x , y ,z.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-32)9 luôn là số âm vì có cơ số âm, số mũ lẻ
1813 luôn là số dương vì có cơ số dương
=> (-32)9 < 1813
The two triangles BAP and BAO have the same height from B, so we have: \(\dfrac{S_{BAP}}{S_{BAO}}=\dfrac{AP}{AO}\)
Similarly, we have: \(\dfrac{S_{CAP}}{S_{CAO}}=\dfrac{AP}{AO}\), from that, we have: \(\dfrac{AP}{AO}=\dfrac{S_{BAP}}{S_{BAO}}=\dfrac{S_{CAP}}{S_{CAO}}=\dfrac{S_{BAP}+S_{CAP}}{S_{BAO}+S_{CAO}}=\dfrac{S_{ABC}}{S_{BAO}+S_{CAO}}\)
Thus, we also have \(\dfrac{BQ}{OB}=\dfrac{S_{ABC}}{S_{BOC}+S_{AOB}}\); \(\dfrac{CR}{OC}=\dfrac{S_{ABC}}{S_{BOC}+S_{AOC}}\)
So we get: \(\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}=\dfrac{S_{ABC}}{S_{COA}+S_{AOB}}+\dfrac{S_{ABC}}{S_{AOB}+S_{BOC}}\)\(+\dfrac{S_{ABC}}{S_{BOC}+S_{AOC}}\)
If \(S_{BOC}=a;S_{COA}=b;S_{AOB}=c\left(a,b,c>0\right)\), then \(P=\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}=\dfrac{S_{ABC}}{b+c}+\dfrac{S_{ABC}}{c+a}+\dfrac{S_{ABC}}{a+b}\)
\(=S_{ABC}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
We have already had the inequality: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) (This is true with all of the positive real number \(x,y,z\). If you don't know about this, please check it on the Internet) \(P\ge S_{ABC}\left(\dfrac{9}{a+b+b+c+c+a}\right)=S_{ABC}.\dfrac{9}{2\left(a+b+c\right)}\)\(=S_{ABC}.\dfrac{9}{2S_{ABC}}=\dfrac{9}{2}\) (vì \(a+b+c=S_{BOC}+S_{COA}+S_{AOB}=S_{ABC}\))
In conclusion, the minimum value of \(\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}\) is \(\dfrac{9}{2}\), happens when \(a=b=c=\dfrac{1}{3}S_{ABC}\) or \(S_{BOC}=S_{COA}=S_{AOC}=\dfrac{1}{3}S_{ABC}\)
Consider \(S_{BOC}=\dfrac{1}{3}S_{ABC}\Leftrightarrow\dfrac{S_{BOC}}{S_{ABC}}=\dfrac{1}{3}\)
We have \(\dfrac{S_{BOP}}{S_{ABP}}=\dfrac{PO}{PA}\) and \(\dfrac{S_{COP}}{S_{ACP}}=\dfrac{PO}{PA}\)
Therefore, we have \(\dfrac{PO}{PA}=\dfrac{S_{BOP}}{S_{ABP}}=\dfrac{S_{COP}}{S_{ACP}}=\dfrac{S_{BOP}+S_{COP}}{S_{ABP}+S_{ACP}}=\dfrac{S_{BOC}}{S_{ABC}}=\dfrac{1}{3}\)
Similarly, we have \(\dfrac{OQ}{BQ}=\dfrac{1}{3};\dfrac{OR}{CR}=\dfrac{1}{3}\)
These means O is the centroid of the triangle ABC.
So in order to minimize the value of \(\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}\), O must be the centroid of the triangle ABC.
a)
Do khi x là số bình phương nên x là số chẵn. Mà 7 là số lẻ
\(\Rightarrow x\in\varnothing\)
\(\Rightarrow x\notinℚ\)
c)
\(x+\dfrac{1}{x}=\dfrac{x}{1}+\dfrac{1}{x}=\dfrac{x.x}{x}+\dfrac{1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{x+1}{1}=x+1\)
Mà đề ra: x khác \(\pm1\Rightarrow x+1\) khác \(\pm1\)
\(\Rightarrow x\in\varnothing\)
\(\Rightarrow x\notinℚ\)
a) \(M\left(x\right)=0\Rightarrow3x-7=0\Rightarrow x=\dfrac{7}{3}\)
Vậy \(x=\dfrac{7}{3}\) là nghiệm của đa thức đã cho.
b) \(N\left(x\right)=0\Rightarrow x^3+2x=0\Rightarrow x\left(x^2+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\left(L\right)\end{matrix}\right.\)
Vậy \(x=0\) là nghiệm của đa thức đã cho.
Lời giải:
\(\frac{-5}{9}.\frac{3}{11}+\frac{-13}{9}.\frac{9}{11}=\frac{-5}{3}.\frac{1}{11}+(-13).\frac{1}{11}=\frac{1}{11}(\frac{-5}{3}-13)=\frac{1}{11}.\frac{-44}{3}\)
\(=\frac{-4.11}{11.3}=\frac{-4}{3}\)
Có một khu du lịch giá vé là342nghìn đồng ông chủ giảm giá vé số lượng người tăng thêm là 14% doanh thu tăng lên 6% hỏi ông chủ đã giảm bao nhiêu tiền
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)\(=k\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)
Thay (1) vào \(2x^2+2y^2-3z^2=-100\)
Có 2(3k)2 +2(4k)2 -3(5k)2 =-100
2.9k2 +2.16k2 -3.25k2=-100
18k2 +32k2 -75k2=-100
-25k2=-100
=>k2= 4
=>\(\left\{{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
TH1 k=2 =>\(\left\{{}\begin{matrix}x=2\cdot3\\y=2\cdot4\\z=2\cdot5\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)
TH2 k=-2 =>\(\left\{{}\begin{matrix}x=-2\cdot3\\y=-2\cdot4\\z=-2\cdot5\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=-6\\y=-8\\z=-10\end{matrix}\right.\)