Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB,AC.
C/M HB/HC=(AB/AC)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{4^2-2.4.\sqrt{2}+\sqrt{2^2}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\left|4-\sqrt{2}\right|}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left|\sqrt{3}-1\right|}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{3}-2}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\sqrt{3^2}-1^2\\ =3-1\\ =2\)
\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{5^2-2.5.\sqrt{3}+\sqrt{3^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{25}}\)
\(=\sqrt{4+5}\)
\(=\sqrt{9}\\ =3\)
\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10.|2+\sqrt{3}|}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10.\left(2+\sqrt{3}\right)}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5.|5-\sqrt{3}|}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5.\left(5-\sqrt{3}\right)}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
= \(\sqrt{4+\sqrt{25}}\)
= \(\sqrt{4+5}\)
= \(\sqrt{9}\)
= \(3\)
\(e,\dfrac{\sqrt{4x-1}}{\sqrt{7-2x}-2}\) có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}4x-1\ge0\\7-2x\ne4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne-\dfrac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ge\dfrac{1}{4}\)
\(d,\dfrac{\sqrt{2x-1}}{\sqrt{2x+17}+1}\) có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}2x-1\ge0\\2x+17\ge0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge-\dfrac{17}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ge\dfrac{1}{2}\)
\(b,c,\dfrac{3}{\sqrt{2x-17}}\) có nghĩa \(\Leftrightarrow2x-17>0\Leftrightarrow x>\dfrac{17}{2}\)
\(a,\sqrt{2-5x}\) có nghĩa \(\Leftrightarrow2-5x\ge0\Leftrightarrow x\le\dfrac{2}{5}\)
Hạ đường cao AH của tam giác ABD => AH=14,4cm
Pytago => AD^2-AH^2=DH^2
=> DH^2=116,64
=> DH=10,8cm
HT lượng => HA^2=HB.HC
=> HB=HA^2/HB=14,4^2/10,8=19,2cm
=> BD=HD+HB=10,8+19,2=30m
Pytago => AB^2=AH^2+HB^2=576
=> AB=24cm
=> chu vi HCN ABCD là: 2(AB+AD)=2(18+24)=84(cm^2)
Ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{4}=\dfrac{9}{4}\left(cm\right)\)
\(BC=BH+HC=4+\dfrac{9}{4}=9\left(cm\right)\)
\(AB=\sqrt{BH.BC}=\sqrt{4.9}=6\left(cm\right)\)
\(AC=\sqrt{CH.BC}=\sqrt{\dfrac{9}{4}.9}=\dfrac{9}{2}\left(cm\right)\)
1 do
2 was traveling
3 was driving
4 read - has become
5 has loved - was
6 has eaten
7 have done
8 have cleaned
9 was watching
10 saw
#\(Errink \times Cream\)
#\(yGLinh\)
1. do
2. was traveling
3. was driving
4. read - has become
5. has loved - was
6. has eaten
7. have done
8. have cleaned
9. was watching
10. saw
Câu c của em đấy nhé: \(\sqrt{-4x+5}\) có nghĩa ⇔ -4\(x\) + 5 ≥ 0
4\(x\) ≤ 5
\(x\) ≤ \(\dfrac{5}{4}\)
Vậy em kéo dấu ≤ vào ô trống thứ nhất, sau đó em kéo \(\dfrac{5}{4}\) vào ô trống thứ hai rồi ấn nút nộp bài là xong em nhé
Aabb có TLGT là 1Ab:1ab
Nếu Aabb x kiểu gen chỉ cho 1 giao tử duy nhất sẽ cho mô hình phân li kiểu hình 1:1
VD: Aabb x aabb hay Aabb x aaBB
Ta thấy 1 cặp tam giác đồng dạng quen thuộc là \(\Delta HAB~\Delta HCA\), từ đó suy ra \(\dfrac{S_{HAB}}{S_{HCA}}=\left(\dfrac{AB}{AC}\right)^2\). Mà ta lại có \(\dfrac{S_{HAB}}{S_{HCA}}=\dfrac{HB}{HC}\) (2 tam giác có chung đường cao hạ từ A) nên suy ra đpcm.