Cho đường tròn (O) có đường kính AB và d là tiếp tuyến của (O) tại A. Trên đường thẳng d lấy điểm M khác A. Đường thẳng qua O vuông góc với MB tại H và cắt đường thẳng d tại N.
a) Chứng minh tứ giác MAOH nội tiếp đường tròn.
b) Chứng minh AM. AN = AO. ΑΒ.
c) MB cắt (O) tại C khác B, NC cắt (O) tại D khác C. Gọi K là giao điểm của BD và ON. Chứng trinh tứ giác OCDK nội tiếp.
d) Chứng minh tứ giác ACHK là hình chữ nhật.
a: Xét tứ giác MAOH có \(\widehat{MAO}+\widehat{MHO}=90^0+90^0=180^0\)
nên MAOH là tứ giác nội tiếp
b: Xét ΔAMB vuông tại A và ΔAON vuông tại A có
\(\widehat{AMB}=\widehat{AON}\left(=90^0-\widehat{ANO}\right)\)
Do đó: ΔAMB~ΔAON
=>\(\dfrac{AM}{AO}=\dfrac{AB}{AN}\)
=>\(AM\cdot AN=AO\cdot AB\)