giúp mình bài 4 với ạ mình cảm ưn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức biểu thị thể tích hình chữ nhật là:
4.\(x\)(\(x\) + 2) = 4\(x^2\) + 8\(x\)
Kết luận:
Công thức biểu thị thể tích hình chữ nhật là: 4\(x^2\) + 8\(x\)
Lời giải:
Tổng vận tốc hai xe là: $30+38=68$ (km/h)
Độ dài quãng đường AB là:
$68\times \frac{5}{2}=170$ (km)
Số truyện khối Ba quyên góp được là :
875875 x 22 == 17501750 (( quyển ))
Số quyển truyện cả 2 khối quyên góp được là :
875875 ++ 17501750 == 26252625 (( quyển )
Số truyện học sinh khối 3 quyên góp là:875.2=1750
Cả 2 khối quyên góp được tất cả số truyện là: 875+1750=2625
Diện tích mảnh đất đó là:
\(\dfrac{\left(75+60\right)\times42}{2}=2835\left(m^2\right)\)
Diện tích trồng cà rốt chiếm:
\(100\%-40\%=60\%\) (diện tích mảnh đất)
Diện tích trồng cà rốt là:
\(2835\times60\%=1701\left(m^2\right)\)
a Chiều cao mảnh vườn là:
[360-60] : 2 = 150[m]
Diện tích mảnh vườn là:
360 * 150 : 2 = 27000[m2]
b Diện tích trồng cây ăn quả là:
27000 * [100% - 65%] = 9450[m2]
Đáp số: a 27000m2
b 9450m2
Lời giải:
Coi quãng đường $AB$ dài $x$ km. Sau khi chạy được 2/5 quãng đường đầu thì còn $x-\frac{2}{5}x=\frac{3}{5}x$ (km)
Vậy kể từ giờ thứ hai ô tô còn $\frac{3}{5}x$ km đường. Giờ thứ hai sau khi xe chạy được 2/5 quãng đường thì đi còn 3/5 quãng đường. 3/5 quãng đường này dài: $40+4=44$ (km)
Độ dài quãng đường ô tô đi kể từ giờ thứ hai (tức là $\frac{3}{5}x$) dài:
$44:\frac{3}{5}=73,3$ (km)
Độ dài quãng đường AB là:
$x=73,3:\frac{3}{5}=122$ (km)
Vận tốc trung bình: $122:3=40,7$ (km/h)
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
=>BA=BD
=>ΔBAD cân tại B
ΔBAE=ΔBDE
=>EA=ED
=>E nằm trên đường trung trực của AD(1)
ta có: BA=BD
=>B nằm trên đường trung trực của AD(2)
Từ (1),(2) suy ra BE là đường trung trực của AD
b: AE=ED
mà ED<EC(ΔEDC vuông tại D)
nên EA<EC
Bài 9:
Cạnh của chiếc khăn tay đó dài:
$64:4=16$ (cm)
Đáp số: $16$ cm
Bài 10:
Lần thứ hai bà thu hoạch được số kg mận là:
$729\times 4=2916$ (kg)
Lần thứ ba bà thu hoạch được số kg mận là:
$2916-916=2000$ (kg)
Đáp số: $2000$ kg
Lời giải:
a. Xét tam giác $AHB$ và $AHC$ có:
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$AB=AC$ (do $ABC$ cân tại $A$)
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
$\Rightarrow \widehat{HAB}=\widehat{HAC}$
$\Rightarrow AH$ là phân giác $\widehat{BAC}$
b.
Từ tam giác bằng nhau phần a suy ra $HB=HC$
Xét tam giác $HBM$ và $HCN$ có:
$HB=HC$ (cmt)
$\widehat{HMB}=\widehat{HNC}=90^0$
$\widehat{HBM}=\widehat{HCN}$ (do tam giác $ABC$ cân tại $A$)
$\Rightarrow \triangle HBM=\triangle HCN$ (ch-gn)
$\Rightarrow BM=CN$
c.
Xét tam giác $MHB$ và $PHC$ có:
$HM=HP$ (gt)
$HB=HC$ (cmt)
$\widehat{MHB}=\widehat{PHC}$ (đối đỉnh)
$\Rightarrow \triangle MHB=\triangle PHC$ (c.g.c)
$\Rightarrow \widehat{HMB}=\widehat{HPC}$
Mà 2 góc này ở vị trí so le trong nên $CP\parallel BM$ hay $CP\parallel AB$
d.
Vì $\triangle HBM=\triangle HCN$ nên: $MB=CN, HM=HN$
Vì $\triangle MHB=\triangle PHC$ nên $MB=CP, HM=HP$
$\Rightarrow CN=CP, HN=HP$
$\Rightarrow HC$ là trung trực của $NP$
$\Rightarrow HC$ cắt $NP$ tại trung điểm của $NP$
$\Rightarrow E$ là trung điểm $NP$
Xét tam giác $MNP$ có $NH, ME$ là trung tuyến và cắt nhau tại $Q$ nên $Q$ là trọng tâm của tam giác $MNP$
$\Rightarrow PQ$ cắt $MN$ tại trung điểm của $MN$ (1)
Mặt khác:
$HM=HN$ (đã cmt)
$AM=AB-MB=AC-CN=AN$
$\Rightarrow AH$ là trung trực của $MN$
$\Rightarrow AH$ cắt $MN$ tại trung điểm của $MN$
$\Rightarrow K$ là trung điểm $MN$ (2)
Từ $(1); (2)\Rightarrow P,Q,K$ thẳng hàng.
Hình vẽ: