K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(a+c=2b\)

\(\Rightarrow2bd=\left(a+c\right).d=cb+cd\)

\(\Rightarrow ad+cd=cb+cd\)

\(\Rightarrow ad+cd-cd=cb\)

\(ad=cb\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

20 tháng 11 2018

Bài làm:

Khí hậu cực kì khô hạn, thể hiện ở lượng mưa rất ít và lượng bốc hơi cao.

Tính khắc nghiệt của khí hậu còn thể hiện ở nhiệt độ chênh lệch rất lớn giữa ngày và đêm, giữa mùa đông và mùa hè.

20 tháng 11 2018

Khí hậu cực kì khô hạn, thể hiện ở lượng mưa rất ít và lượng bốc hơi cao.

Tính khắc nghiệt của khí hậu còn thể hiện ở nhiệt độ chênh lệch rất lớn giữa ngày và đêm, giữa mùa đông và mùa hè.

x = (4,2 - 4,2 x 10 + 76 : 76) : (0,01 x 0,1)

   = (4,2 - 42 + 1) : 0,001

   = -37,8 : 0,001

   = -37800

y = (689,7 + 0,3) : (7,4 : 0,2 - 2,2 - 1,5)

   = 690 : (37 - 0,7)

   = 690 : 36,3

   = 19.0082644628

Vì 19.0082644628 > (-378000) nên y > x

Học tốt!!!

20 tháng 11 2018

Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.

4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)

Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1

Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y

=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}

+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5

=> y = 5 hoặc y = 21 (chọn)

+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3

=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)

+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)

=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)

+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)

+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)

=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)

Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).

20 tháng 11 2018

Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.

4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)

Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1

Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y

=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}

+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5

=> y = 5 hoặc y = 21 (chọn)

+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3

=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)

+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)

=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)

+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)

+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)

=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)

Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).

20 tháng 11 2018

Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.

4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)

Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1

Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y

=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}

+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5

=> y = 5 hoặc y = 21 (chọn)

+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3

=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)

+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)

=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)

+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)

+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)

=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)

Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).

20 tháng 11 2018

\(\Rightarrow\left(4x+1\right)\left(4y+1\right)⋮xy\)

\(\Rightarrow16xy+4x+4y+1⋮xy\)

vì 16xy\(⋮xynên4x+4y+1⋮xy\)

\(\Rightarrow4xy+4y^2+y⋮xy\)

\(\Rightarrow y\left(4x+1\right)⋮xy\)

\(\Rightarrow4y+1⋮x\)

thế y = 0,1,2,3,... ta được x

20 tháng 11 2018

Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.

4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)

Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1

Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y

=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}

+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5

=> y = 5 hoặc y = 21 (chọn)

+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3

=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)

+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)

=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)

+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)

+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)

=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)

Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).

20 tháng 11 2018

Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.

4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)

Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1

Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y

=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}

+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5

=> y = 5 hoặc y = 21 (chọn)

+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3

=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)

+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)

=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)

+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)

+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)

=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)

Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).

20 tháng 11 2018

Ta có: \(f\left(4^3+1\right)=4^2-4.3\Rightarrow f\left(65\right)=4\)

20 tháng 11 2018

Ta có: \(x^3+1=65\)

\(\Rightarrow x^3=64\)\(\Rightarrow x=4\)

Thay \(x=4\)vào hàm số ban đầu ta được

\(f\left(65\right)=4^2-3.4=16-12=4\)

Vậy \(f\left(65\right)=4\)

20 tháng 11 2018

Ta có: \(f\left(671.3+1\right)=\left(671-670\right)\left(671-672\right)\Rightarrow f\left(2014\right)=1.\left(-1\right)=-1\)

20 tháng 11 2018

Ta có: \(3x+1=2014\)

\(\Rightarrow3x=2013\)\(\Rightarrow x=671\)

Thay \(x=671\)vào hàm số trên ta được: 

\(\left(671-670\right).\left(671-672\right)=1.\left(-1\right)=-1\)

Vậy \(f\left(2014\right)=-1\)