giúp ý c và d còn a và b thì không cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,B=\dfrac{\left(-3+4\right).\left(-3\right)-2}{-3+4}=\dfrac{-3-2}{1}=-5\\ d,A=\dfrac{2.\left(-2\dfrac{1}{3}\right)+5}{-2\dfrac{1}{3}+1}=\dfrac{2.\dfrac{-7}{3}+5}{-\dfrac{7}{3}+1}=\dfrac{-\dfrac{14}{3}+5}{-\dfrac{4}{3}}=\dfrac{\dfrac{1}{3}}{-\dfrac{4}{3}}=-\dfrac{1}{4}\)
\(P=\dfrac{2x\sqrt[]{x}-\sqrt[]{x}+1}{x-1}\left(x\ge0;x\ne1\right)\)
\(\Rightarrow P=\dfrac{x\sqrt[]{x}-\sqrt[]{x}+x\sqrt[]{x}+1}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)+\sqrt[]{x^3}+1}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(x-1\right)}{x-1}+\dfrac{\left(\sqrt[]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\)
\(\Rightarrow P=\sqrt[]{x}+\dfrac{\left(x-\sqrt[]{x}+1\right)}{\left(\sqrt[]{x}-1\right)}\)
\(2.\left(x-1\right).\left(2+x\right)=2.\left(x^2-x+2x-2\right)\\ =2.\left(x^2+x-2\right)\\ =2x^2+2x-4\)
😉 Các bạn nhanh tay tham gia ở đây https://www.facebook.com/olm.vn để giật giải thưởng siêu to khổng lồ nha 😁
1 con gấu là: 36 : 3 = 12
1 cái bánh là: ( 26 - 12 ) : 2 = 7
1 Chùm nho là : (15 - 7 ) : 2 = 4
1 con gấu - 1 cái bánh + 1chùm nho
hay: 12 - 7 + 4 = 9
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
e. ĐKXĐ: $x\geq \frac{1}{2}$
PT \(\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}+2\sqrt{(2x-1)-4\sqrt{2x-1}+4}+3\sqrt{(2x-1)-6\sqrt{2x-1}+9}=4\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}+2\sqrt{(\sqrt{2x-1}-2)^2}+3\sqrt{(\sqrt{2x-1}-3)^2}=4\)
\(\Leftrightarrow |\sqrt{2x-1}-1|+2|\sqrt{2x-1}-2|+3|\sqrt{2x-1}-3|=4\)
Đặt $\sqrt{2x-1}-3=a$ thì:
$|a+2|+2|a+1|+3a=4$
Nếu $a\geq 0$ thì:
$a+2+2(a+1)+3a=4$
$\Leftrightarrow 6a+4=4\Leftrightarrow a=0\Leftrightarrow \sqrt{2x-1}=3\Leftrightarrow 2x-1=9\Leftrightarrow x=5$ (tm)
Nếu $-1\leq a<0$ thì:
$a+2+2(a+1)-3a=4$
$\Leftrightarrow 4=4$ (luôn đúng). Vậy là mọi giá trị $-1\leq a<0$ luôn thỏa mãn đề
$\Leftrightarrow -1\leq \sqrt{2x-1}-3<0$
$\Leftrightarrow 2\leq \sqrt{2x-1}<3\Leftrightarrow \frac{5}{2}\leq x< 5$
Nếu $-2\leq a< -1$ thì:
$a+2-2(a+1)-3a=4$
$\leftrightarrow -4a=4\Leftrightarrow a=-1$ (không tm)
Nếu $a< -2$ thì:
$-(a+2)-2(a+1)-3a=4$
$\Leftrightarrow -6a-4=4$
$\Leftrightarrow x=\frac{-8}{6}> -2$ (không tm)
Vậy $\frac{5}{2}\leq x\leq 5$
Lời giải:
ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow [(2x-1)-2\sqrt{2x-1}+1]+[(3x+1)-4\sqrt{3x+1}+4]=0$
$\Leftrightarrow (\sqrt{2x-1}-1)^2+(\sqrt{3x+1}-2)^2=0$
Vì $(\sqrt{2x-1}-1)^2\geq 0; (\sqrt{3x+1}-2)^2\geq 0$ với mọi $x\geq \frac{1}{2}$
Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{2x-1}-1=\sqrt{3x+1}-2=0$
$\Leftrightarrow x=1$ (tm)
c, A = \(\dfrac{2x+5}{x+1}\) (\(x\ne\) -1)
A \(\in\) Z ⇔ 2\(x\) + 5 ⋮ \(x\) + 1
2(\(x+1\)) + 3 ⋮ \(x\) + 1
3 ⋮ \(x\) + 1
\(x+1\) \(\in\)Ư(3) = { -3; -1; 1; 3}
\(x\) + 1 \(\in\) { -4; -2; 0; 2}
d, B = \(\dfrac{\left(x+4\right)x-2}{\left(x+4\right)}\) (\(x\ne\) -4)
B \(\in\) Z ⇔ (\(x+4\))\(x\) - 2 ⋮ \(x+4\)
2 ⋮ \(x+4\)
\(x+4\) \(\in\) Ư(2) = { -2; -1; 1; 2}
\(x\) \(\in\) { -6; -5; -3; -2}