K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔKBC và ΔHCB có

KB=HC

\(\widehat{KBC}=\widehat{HCB}\)

CB chung

Do đó: ΔKBC=ΔHCB

=>\(\widehat{KCB}=\widehat{HBC}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC

AH
Akai Haruma
Giáo viên
13 tháng 4 2024

Bạn nên ghi hẳn đề bài ra để mọi người hỗ trợ tốt hơn nhé.

AH
Akai Haruma
Giáo viên
13 tháng 4 2024

Lời giải:

a.

$A(x)=14x^4+(-x^3+x^3)+(3x-5x+x-6x+5x)-1$

$=14x^4-2x-1$
$B(x)=-4x^4-3x^2+(3x+2x+3x)+(-5-5)$
$=-4x^4-3x^2+8x-10$

b,c.

$C(x)=A(x)+B(x)=14x^4-2x-1+(-4x^4-3x^2+8x-10)$

$=14x^4-2x-1-4x^4-3x^2+8x-10$

$=(14x^4-4x^4)-3x^2+(-2x+8x)-(1+10)$

$=10x^4-3x^2+6x-11$

Hệ số cao nhất của $C(x)$ là hệ số gắn liền với đơn thức bậc cao nhất trong cấu tạo của $C(x)$, là $10$
Hệ số tự do của $C(x)$ là hệ số không gắn liền với biến, là $-11$

D(x)=A(x)-B(x)=14x^4-2x-1-(-4x^4-3x^2+8x-10)$

$=14x^4-2x-1+4x^4+3x^2-8x+10$

$=(14x^4+4x^4)+3x^2+(-2x-8x)+(-1+10)$

$=18x^4+3x^2-10x+9$
Hệ số cao nhất của $D(x)$ là $18$

Hệ số tự do của $D(x)$ là $9$

d.

$C(-1)=10(-1)^4-3(-1)^2+6(-1)-11=-10$
$C(1)=10.1^4-3.1^2+6.1-11=2$

$D(1)=18.1^4+3.1^2-10.1+9=20$

$D(0)=18.0^4+3.0^2-10.0+9=9$

 

13 tháng 4 2024

4 năm nữa em trả lời nghen

 

13 tháng 4 2024

giúp ik :(((

 

13 tháng 4 2024

loading...  

a) Do BD là tia phân giác của ∠ABC (gt)

⇒ ∠ABD = ∠CBD

⇒ ∠ABD = ∠EBD

Xét ∆BDA và ∆BDE có:

BD là cạnh chung

∠ABD = ∠EBD (cmt)

AB = BE (gt)

⇒ ∆BDA = ∆BDE (c-g-c)

b) Do ∆BDA = ∆BDE (cmt)

⇒ AD = DE (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AE (1)

Do BA = BE (gt)

⇒ B nằm trên đường trung trực của AE (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AE

⇒ BD ⊥ AE

c) Do ∆BAD = ∆BAE (cmt)

⇒ ∠BAD = ∠BED (hai góc tương ứng)

⇒ ∠BED = 90⁰

⇒ DE ⊥ BE

⇒ DE ⊥ BC

⇒ FE ⊥ BC

⇒ FE là đường cao của ∆BCF

Do CA AB (∆ABC vuông tại A)

⇒ CA ⊥ BF

⇒ CA là đường cao thứ hai của ∆BCF

Mà D là giao điểm của CA và FE

⇒ BD là đường cao thứ ba của ∆BCF

⇒ BD ⊥ CF

Mà BD ⊥ AE (cmt)

⇒ AE // CF

d) Do BD là tia phân giác của ∠ABC (gt)

⇒ BD là tia phân giác của ∠FBC

⇒ BD là đường phân giác của ∆BCF

∆BCF có:

BD là đường cao (cmt)

BD là đường phân giác (cmt)

⇒ ∆BCF cân tại B

⇒ BD là đường trung trực của ∆BCF

Mà M là trung điểm của CF (gt)

⇒ B, D, M thẳng hàng

13 tháng 4 2024

           Giải:

a; Xét tam giác BDA và tam giác BDE có:

BA = BE (gt)

\(\widehat{ABD}\) = \(\widehat{DBE}\) (gt)

Cạnh BD (chung)

Vậy \(\Delta\) BDA = \(\Delta\) BDE (C-g-c)

b; Xét tam giác ABE có

   BA = BE (gt)

  ⇒ tam giác ABE cân tại B

 BD là phân giác của góc ABE (gt)

 ⇒ BD \(\perp\) AE (vì trong tam giác cân đường phân giác cũng là đường cao)

c; \(\Delta\) BDA = \(\Delta\) BDE (cmt)

⇒ \(\widehat{BAD}\) = \(\widehat{BED}\) = 900

Xét tam giác vuông EBF và tam giác vuông ABC có:

      BE = AB

      \(\widehat{FBE}\) = \(\widehat{CBA}\)

⇒ \(\Delta\) EBF  =  \(\Delta\) ABC (góc nhọn, cạnh góc vuông)

⇒ BF = BC 

⇒ \(\Delta\) BFC  cân tại B

⇒ BD \(\perp\) FC (trong tam giác cân đường cao cũng là đường phân giác)

Mặt khác BD \(\perp\) AE (cmt)

⇒ AE // FC (vì hai đường thẳng cùng vuông góc đường thẳng thứ ba thì song song với nhau)

d; BD là phân giác của tam giác cân BFC nên BD là đường trung tuyến của FC, mà M là trung điểm CF vậy B, D, M thẳng hàng vì qua một đỉnh của tam giác chỉ kẻ được một trung tuyến ứng với cạnh đối diện của đỉnh đó. 

       

AH
Akai Haruma
Giáo viên
14 tháng 4 2024

Đề bài cụ thể là gì vậy bạn?

a: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

=>\(\widehat{ACB}=47^0\)

ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}=180^0-2\cdot47^0=86^0\)

b: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

c Xét ΔAMB có AM+BM>AB

mà AB=AC(ΔABC cân tại A)

nên AM+BM>AC