K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tam giác BEC và tam giác AEK có:

                            EB=EK (gt)

                            góc BEC=góc AEK (đối đỉnh)

                            EA=EC (gt)

Do đó: tam giác BEC=tam giác AEK (c.g.c)

Suy ra: BC=AK (2 cạnh tương ứng)

b, Xét tam giác ABC cân tại A có AM là đường phân giác tại đỉnh A nên AM đồng thời là đường cao và là đường trung tuyến ứng với cạnh BC

Vậy AM vuông góc với BC (1) và M là trung điểm của BC

Tam giác BEC=Tam giác AEK (cmt) suy ra:góc BCE=góc AKE

Do đó: AK song song với BC. (2) (vì có 2 góc so le trong bằng nhau)

Từ (1) và (2) thì AM vuông góc với AK

c, M là trung điểm của BC(gt) nên MB=MC= 1/2 BC= 1/2 .12 =6(cm)

AM vuông góc với BC(cmt) suy ra: tam giác AMB vuông tại M

Do đó:    AM^2 +BM^2 =AB^2

              AM^2 + 6^2 =10^2 (vì BM= 6cm,AB=10cm)

              AM^2 + 36=100

              AM^2 =64

              AM=8 (cm)

Xét tam giác ABC có 2 đường trung tuyến AM và BE cắt nhau tại O nên O là trọng tâm của tam giác ABC

Vậy OM =1/3 AM =1/3 .8 =8/3 (cm)

6 tháng 10 2021

MIB cân tại M vì góc MIB= góc MBI

Nên MB=MI=12cm

=> MI//AC, ta có:

AMAB=IMBC=1230=35AMAB=IMBC=1230=35

AB12AB=35AB=30(cm)⇒AB−12AB=35⇒AB=30(cm)

BD là phân giác ngoài của góc ABC, ta có:
ADCD=ABBC=3020=32ADCD=ABBC=3020=32

Do đó BC // DN, ta lại có:

ANBN=ADCN=32ANBN=ADCN=32

ABBN=12;30BN=12⇒ABBN=12;30BN=12

Do đó BN=60(cm). Từ đó ta có: MN=72(cm)

b) Ta có EF//AB nên:

IAIC=ABEC(1)IAIC=ABEC(1)ADCD=ABCF(2)ADCD=ABCF(2)

Do đó BI và BD là phân giác trong và ngoài của góc B trong tam giác ABC, ta có: IAIC=DADC(3)IAIC=DADC(3)

Từ (1), (2) và (3) ta có: ABEC=ABCFABEC=ABCFdo đó EC=EF

Từ IAIC=BIIEAI.IE=BI.IC

DD
6 tháng 10 2021

Bài 5: 

a) \(x^2+4x-5=x^2-x+5x-5=x\left(x-1\right)+5\left(x-1\right)=\left(x+5\right)\left(x-1\right)\)

b) \(2x^2-14x+20=2x^2-4x-10x+20=2x\left(x-2\right)-10x\left(x-2\right)=2\left(x-5\right)\left(x-2\right)\)

c) \(3x^2+8x+5=3x^2+3x+5x+5=3x\left(x+1\right)+5\left(x+1\right)=\left(3x+5\right)\left(x+1\right)\)

d) \(6x^2-xy-7y^2=6x^2+6xy-7xy-7y^2=6x\left(x+y\right)-7y\left(x+y\right)\)

\(=\left(6x-7y\right)\left(x+y\right)\)

DD
6 tháng 10 2021

Bài 4: 

a) \(x^3-6x^2+12x-8=x^3-2.3.x^2+3.2^2.x-2^3=\left(x-2\right)^3\)

b) \(\left(x-1\right)^3+\left(3-x\right)^3=\left(x-1+3-x\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(3-x\right)+\left(3-x\right)^2\right]\)

\(=2\left(x^2-2x+1+x^2-4x+3+x^2-6x+9\right)\)

\(=2\left(3x^2-12x+13\right)\)

c) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

6 tháng 10 2021

Ta có 2x3 - 3x2 + x + a

= 2x3 + 4x2 - 7x2 - 14x + 15x + 30 + (a - 30) 

= 2x2(x + 2) - 7x(x + 2) + 15(x + 2) + (a - 30) 

= (x + 2)(2x2 - 7x + 15) + a - 30

Để (2x3 - 3x2 + x + a) \(⋮\)(x + 2)

=> a - 30 = 0

<=> a = 30

Vậy a = 30 

6 tháng 10 2021
a) 10(√x-y)-8y(y-√x) =10(√x-y)-(-8y(y-√x)) =10(√x-y)+8y(√x-y) =(√x-y)+(10+8y)
6 tháng 10 2021

a, 5 .(m-n)

b, -2.(x+y)

c,-7.(x-y)

d, \(5x^2.\left(2x-3\right)\)

e,\(x.\left(x-y\right)\)

f,\(3x^2.\left(3x^2-2\right)\)

g,\(\left(x-3\right).\left(x-5\right)\)

l,\(5\left(x-2\right)\)