K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TD
17 tháng 2 2024

loading... 

Câu e:

$\widehat {A_1}+\widehat{A_2}=90^{\circ}$

$\widehat{A_2}=\widehat{C_1}$

$\Rightarrow \widehat{A_1}+\widehat{C_1}=90^{\circ}$

Mặt khác $\widehat{C_1}+\widehat{CAH} = 90^{\circ}$

Suy ra $A_1=\widehat{CAH}$ (1)

Chứng minh được $\Delta JAE = \Delta HAE$ (cgv-gn)

$\Rightarrow AJ=AH$ (2)

Từ (1); (2) và chung cạnh $AC$ ta suy ra $\Delta AJC=\Delta AHC$ (c.g.c).

Suy ra $\widehat {J}=90^{\circ}$ hay $CJ\bot IJ$.

Chứng minh tương tự $BI \bot IJ$.

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Lời giải:

ĐKXĐ: $x\neq \pm 2; x\neq 0$

\(A=\left[\frac{3x^2+4}{x(x+2)}+\frac{x(2x-4)}{x(x+2)}\right].\frac{2x}{(x-2)(x+2)}\\ =\frac{3x^2+4+2x^2-4x}{x(x+2)}.\frac{2x}{(x-2)(x+2)}\\ =\frac{5x^2-4x+4}{x(x+2)}.\frac{2x}{(x-2)(x+2)}\\ =\frac{2(5x^2-4x+4)}{(x-2)(x+2)^2}\)

Biểu thức sau khi thu gọn xấu quá bạn. Bạn có viết sai đề không nhỉ?

30 tháng 1 2024

Bài 1:

1; (d) // (d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}m=2\\-7\ne0\end{matrix}\right.\)

Kết luận : (d) // (d') khi m = 2

2; (d)//(d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}m+2=1\\4\ne-3\end{matrix}\right.\)

⇔  \(\left\{{}\begin{matrix}m=1-2\\4\ne-3\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}m=-1\\4\ne-3\end{matrix}\right.\)

Kết luận (d)//(d') khi m = -1

 

30 tháng 1 2024

Bài 2:

a; (d) cắt (d') ⇔ a ≠ a'

⇔ m ≠ 2m + 1 

    2m - m ≠ -1

            m ≠ -1 

   Vậy (d) cắt (d') khi m ≠ -1

b; (d)//(d') ⇔ \(\left\{{}\begin{matrix}m=2m+1\\3\ne-5\end{matrix}\right.\)

                ⇒ \(\left\{{}\begin{matrix}2m-m=-1\\3\ne-5\end{matrix}\right.\)

                ⇒   \(\left\{{}\begin{matrix}m=-1\\3\ne-5\end{matrix}\right.\)

Vậy (d)//(d') khi m = -1

AH
Akai Haruma
Giáo viên
29 tháng 1 2024

1.

Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m=2\\ -7\neq 0\end{matrix}\right.\Leftrightarrow m=2\)

2.

Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m+2=1\\ 4\neq -3\end{matrix}\right.\Leftrightarrow m=-1\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2024

Lời giải:
Gọi PTĐT cần tìm là $y=ax+b$

Đường thẳng đi qua gốc tọa độ (0;0) nên:

$0=a.0+b\Rightarrow b=0$

Đường thẳng đi qua $A(2;1)$ nên: 

$1=2a+b=2a+0=2a\Rightarrow a=\frac{1}{2}$
Vậy hệ số góc là $a=\frac{1}{2}$

27 tháng 1 2024

 Một người có thể bắt tay tối đa với \(0,1,2,...,19\) người khác.  Nhưng nếu có người bắt tay với 0 người thì sẽ không thể có người bắt tay với 19 người. Ngược lại, nếu có người bắt tay với 19 người thì sẽ không có ai bắt tay với 0 người. 

 Do đó, số các số cái bắt tay khác nhau có thể xảy ra là 19. Nhưng do có 20 người nên theo nguyên lí Dirichlet, chắc chắn sẽ tồn tại 2 người có số cái bắt tay là như nhau. 

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Lời giải:

$B=\frac{x^2(2x+1)+2x(2x+1)-3(2x+1)-x+8}{2x+1}$

$=\frac{(2x+1)(x^2+2x-3)+8-x}{2x+1}=x^2+2x-3+\frac{8-x}{2x+1}$

Với $x$ nguyên, để $B$ nguyên thì $\frac{8-x}{2x+1}$ nguyên

Với $8-x, 2x+1$ là số nguyên thì điều này xảy ra khi $8-x\vdots 2x+1$

$\Rightarrow 2(8-x)\vdots 2x+1$

$\Rightarrow 17-(2x+1)\vdots 2x+1$

$\Rightarrow 17\vdots 2x+1$

$\Rightarrow 2x+1\in \left\{\pm 1; \pm 17\right\}$

$\Rightarrow x\in \left\{0; -1; 8; -9\right\}$ (thỏa mãn)

22 tháng 1 2024

thôi đm mày