xxvii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** Bổ sung điều kiện $n$ là số nguyên.
Lời giải:
$n^2+2n+7\vdots n+1$
$\Rightarrow n(n+1)+(n+1)+6\vdots n+1$
$\Rightarrow 6\vdots n+1$
$\Rightarrow n+1\in\left\{\pm 1; \pm 2; \pm 3; \pm 6\right\}$
$\Rightarrow n\in\left\{0; -2; -3; 1; -4; 2; -7; 5\right\}$
Vì số tự nhiên cần tìm có đúng 4 ước là
1; a; b; n và n + 1 = 4.( a + b)
Nên n là ước lớn nhất vì vậy n là chính số cần tìm
Vì số ước số của n là 4 và a; b là 2 ước của n nên n = a.b ( a; b \(\in\) P)
Theo bài ra ta có: a.b + 1 = 4.(a + b) ⇒ a.b + 1 = 4.a + 4.b
⇒ a.b - 4a = 4b - 1 ⇒ a.(b - 4) = 4b - 1 ⇒ a = \(\dfrac{4b-1}{b-4}\) ⇒ a = 4 + \(\dfrac{15}{b-4}\)
Vì a \(\in\) P nên b - 4 \(\in\) Ư(15)
Lập bảng ta có:
b - 4 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
b | -11 (loại) |
-1(loại) |
1 | 3 | 5 | 7 | 9 loại | 19 |
a = 4 + \(\dfrac{15}{b-4}\) | -1 loại | -11 loại | 19 | 9 loại | 5 |
Theo bảng trên ta có a = 5; b = 19 \(\Rightarrow\) n = 5.19 = 95
Vậy các số tự nhiên thỏa mãn đề bài là 95.
Ghi chú thử lại ta có: 95 = 5.19
Ư(95) = 1; 5; 19; 95 (đúng 4 ước ok)
95 + 1 = 96 = 4.( 5 + 19) (ok)
Do (a - b) ⋮ 7 ⇒ a - b = 7k (k ∈ ℕ)
⇒ a = 7k + b
⇒ 4a + 3b = 4.(7k + b) + 3b
= 28k + 4b + 3b
= 28k + 7b
= 7.(4k + b) ⋮ 7
Vậy (4a + 3b) ⋮ 7
Gọi x (cm) là độ dài lớn nhất của cạnh hình vuông có thể cắt (x ∈ ℕ)
⇒x = ƯCLN(75; 105)
75 = 3.5²
105 = 3.5.7
⇒ x = ƯCLN(75; 105) = 3.5 = 15
Vậy cạnh hình vuông lớn nhất có thể cắt là 15 cm
\(a,700:\left\{100-\left[40.2-\left(20.5\right):5\right]\right\}\\ =700:\left\{100-\left[80-20\right]\right\}\\ =700:40\\ =\dfrac{35}{2}.\)
Kiểm tra lại dấu phần \(b,\) .
\(XXVII:27\)
27