K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(A=4x-4\sqrt{x}+5\)

\(=\left(2\sqrt{x}-1\right)^2+4\ge4\forall x\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow2\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{4}\)

b)\(B=1-x-3\sqrt{x}\le1-0-3\sqrt{0}=0\)(do \(x\ge0\))

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

10 tháng 7 2021

Bạn xem hình vẽ ở đây nhé: https://i.imgur.com/sh8KysD.png

 Gọi CD giao AB tại O, Đặt OD=a, OA=b.

Xét tam giác OAD vuông tại O ta có 
a^2 + b^2 =25

Xét tam giác OBC vuông tại O ta có 
(a+8^2 )+ (b+2^2=13^2
Từ đó tính được a=84/17 hoặc a=4. Loại a=84/17vì với a=84/17 thì b<0

Với a=4 suy ra b=3. Khi đó SABCD=SOBC-SOAD=24

10 tháng 7 2021

Bạn xem hình vẽ ở đây nhé: https://i.imgur.com/sh8KysD.png

 Gọi CD giao AB tại O, Đặt OD=a, OA=b.

Xét tam giác OAD vuông tại O ta có \(a^2+b^2=25\)

Xét tam giác OBC vuông tại O ta có \(\left(a+8\right)^2+\left(b+2\right)^2=13^2\)

Từ đó tính được a \(=\frac{87}{17}\)hoặc a = 4. Loại a = \(\frac{87}{17}\)vì với a = \(\frac{87}{17}\) thì \(b< 0\)

Với a = 4 suy ra b = 3. Khi đó \(^SABCD=^SOBC-^SOAD=24\)

10 tháng 7 2021

\(\sqrt{4x^2-4x+1}=3x-2\)   

\(\sqrt{\left(2x-1\right)^2}=3x-2\)   

\(\left|2x-1\right|=3x-2\)   

\(\orbr{\begin{cases}2x-1=3x-2\\2x-1=-3x+2\end{cases}}\)   

\(\orbr{\begin{cases}1=x\\5x=1\end{cases}}\)    

\(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

ĐKXĐ: \(x\ge\frac{2}{3}\)

Ta có : \(\sqrt{4x^2-2x+1}+2=3x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3x-2\)

\(\Leftrightarrow|2x-1|=3x-2\)

\(\Leftrightarrow2x-1=3x-2\)(do \(x\ge\frac{2}{3}\))

\(\Leftrightarrow x=1\left(TM\right)\)

Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)

10 tháng 7 2021

Áp dụng bđt svacxo, ta có: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\), ta có:

 \(\frac{4}{2a+b+c}+\frac{4}{2b+c+a}+\frac{4}{2c+a+b}\le4\cdot\frac{\left(1+1+1\right)^2}{4\left(a+b+c\right)}=\frac{9}{a+b+c}\) (1)

Áp dụng bđt: \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\), ta có:

 \(\frac{4}{2a+b+c}\le\frac{1}{a+b}+\frac{1}{a+c}\le\frac{1}{4}\cdot\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

CMTT:: \(\frac{4}{2b+c+a}\le\frac{1}{4}\cdot\left(\frac{2}{b}+\frac{1}{a}+\frac{1}{c}\right)\)

  \(\frac{4}{2c+a+b}\le\frac{1}{4}\cdot\left(\frac{2}{c}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(\frac{4}{2a+b+c}+\frac{4}{2b+c+a}+\frac{4}{2c+a+b}\le\frac{1}{4}\cdot4.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (2)

Từ (1) và (2)

=> \(\frac{9}{a+b+c}\le\frac{4}{2a+b+c}+\frac{4}{2b+c+a}+\frac{4}{2c+a+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

10 tháng 7 2021

Ta có: \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}\)

\(=\frac{6^2}{4\left(a+b+c\right)}=\frac{36}{4\left(a+b+c\right)}=\frac{9}{a+b+c}\)

Lại có áp dụng BĐT Cauchy - Schwarz ngược:

\(\frac{4}{2a+b+c}=\frac{1}{4}\cdot\frac{16}{a+a+b+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự:

\(\frac{4}{a+2b+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) và \(\frac{4}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)

Cộng vế 3 BĐT trên lại ta được:
\(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi: a = b = c

Vậy \(\frac{9}{a+b+c}\le\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)