\(\sqrt{2x^2+8x+6}\) + \(\sqrt{x^2-1}\)= 2x+2
giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)(ĐK: \(-3\le x\le6\))
Đặt \(t=\sqrt{3+x}+\sqrt{6-x}\ge0\)
\(\Leftrightarrow t^2=3+x+6-x+2\sqrt{\left(3+x\right)\left(6-x\right)}\)
\(\Leftrightarrow\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{t^2-9}{2}\)
Phương trình ban đầu tương đương với:
\(t-\frac{t^2-9}{2}=3\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\left(tm\right)\\t=-1\left(l\right)\end{cases}}\)
Với \(t=3\):
\(\sqrt{3+x}+\sqrt{6-x}=3\)
\(\Leftrightarrow9+2\sqrt{\left(3+x\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\left(3+x\right)\left(6-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\left(tm\right)\\x=6\left(tm\right)\end{cases}}\)
\(\sqrt{2x+1}-\sqrt{2-x}=x+3\)(ĐK: \(-\frac{1}{2}\le x\le2\))
Ta có: \(\sqrt{2x+1}-\sqrt{2-x}\le\sqrt{2x+1}\le\sqrt{2.2+1}=\sqrt{5}\)(vì \(-\frac{1}{2}\le x\le2\))
\(x+3\ge-\frac{1}{2}+3=2,5\)(vì \(-\frac{1}{2}\le x\le2\))
mà \(\sqrt{5}< 2,5\)
do đó phương trình vô nghiệm.
ĐK: \(1\le x\le2\).
Với \(x=1\)thì \(\sqrt{x-1}-\sqrt{2-x}=-1\)không thỏa.
Với \(x=2\)thì \(\sqrt{x-1}-\sqrt{2-x}=1\)thỏa.
Với \(1< x< 2\)thì \(0< x-1< 1\Leftrightarrow0< \sqrt{x-1}< 1\)
\(0< 2-x< 1\Leftrightarrow0< \sqrt{2-x}< 1\)
Do đó \(\sqrt{x-1}-\sqrt{2-x}< 1-0=1\).
Vậy phương trình có nghiệm duy nhất \(x=2\).
ĐK : 1 ≤ x ≤ 2
<=> \(\left(\sqrt{x-1}-1\right)-\sqrt{2-x}=0\)
\(\Leftrightarrow\frac{x-1-1}{\sqrt{x-1}+1}-\frac{2-x}{\sqrt{2-x}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{1}{\sqrt{2-x}}\right)=0\)(1)
Dễ thấy với 1 ≤ x ≤ 2 thì \(\frac{1}{\sqrt{x-1}+1}+\frac{1}{\sqrt{2-x}}\)vô nghiệm
nên (1) <=> x - 2 = 0 <=> x = 2 (tm)
\(1,\sqrt{2}\left(3-2\sqrt{9}+2\sqrt{16}-\sqrt{25}\right)=\sqrt{2}\left(3-6+8-5\right)\)
\(=\sqrt{2}.0=0\)
\(2,\sqrt{2}\left(\sqrt{25}-\sqrt{9}+\sqrt{100}-\sqrt{81}\right)\)
\(=\sqrt{2}\left(5-3+10-9\right)=3\sqrt{2}\)
\(3,\sqrt{5}\left(5+\sqrt{4}-3\sqrt{9}\right)=\sqrt{5}\left(5+2-9\right)=-2\sqrt{5}\)
\(4,\sqrt{3}\left(5\sqrt{16}-4\sqrt{9}-2\sqrt{25}+\sqrt{36}\right)\)
\(=\sqrt{3}\left(20-12-10+6\right)=4\sqrt{3}\)
\(5,\sqrt{12}-\sqrt{300}-\sqrt{3}+\frac{10\sqrt{3}}{3}\)
\(\sqrt{3}\left(\sqrt{4}-\sqrt{100}-1+\frac{10}{3}\right)=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)=-\frac{17\sqrt{3}}{3}\)
\(6,\sqrt{3}\left(3\sqrt{4}-4\sqrt{9}+5\sqrt{16}\right)=\sqrt{3}\left(6-12+20\right)\)
\(=14\sqrt{3}\)
\(7,\sqrt{3}\left(2+5-4\right)=3\sqrt{3}\)
\(8,\sqrt{2}\left(8+8-15\right)=\sqrt{2}\)
\(9,\sqrt{5}\left(6-6+4\right)=4\sqrt{5}\)
\(10,\sqrt{6}\left(3-6+3-5\right)=-5\sqrt{6}\)
11, \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
\(=2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
\(=6\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
\(=8\sqrt{2}\)
12, \(3\sqrt{8}-4\sqrt{18}+5\sqrt{32}-\sqrt{50}\)
\(=3.2\sqrt{2}-4.3\sqrt{2}+5.4\sqrt{2}-5\sqrt{2}\)
\(=6\sqrt{2}-12\sqrt{2}+20\sqrt{2}-5\sqrt{2}\)
\(=9\sqrt{2}\)
13, \(\sqrt{125}-2\sqrt{20}-3\sqrt{80}+4\sqrt{45}\)
\(=5\sqrt{5}-2.2\sqrt{5}-3.4\sqrt{5}+4.3\sqrt{5}\)
\(=5\sqrt{5}-4\sqrt{5}-12\sqrt{5}+12\sqrt{5}\)
\(=\sqrt{5}\)
14, \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}\)
\(=2.2\sqrt{7}+2.3\sqrt{7}-3.5\sqrt{7}+4\sqrt{7}\)
\(=4\sqrt{7}+6\sqrt{7}-15\sqrt{7}+4\sqrt{7}\)
\(=-\sqrt{7}\)
15, \(3\sqrt{2}+\sqrt{8}+\frac{1}{2}\sqrt{50}-\sqrt{32}\)
\(=3\sqrt{2}+2\sqrt{2}+\frac{1}{2}.5\sqrt{2}-4\sqrt{2}\)
\(=3\sqrt{2}+2\sqrt{2}+\frac{5}{2}\sqrt{2}-4\sqrt{2}\)
\(=\frac{7}{2}\sqrt{2}\)
16, \(3\sqrt{50}-2\sqrt{12}-\sqrt{18}+\sqrt{75}-\sqrt{8}\)
\(=3.5\sqrt{2}-2.2\sqrt{3}-3\sqrt{2}+5\sqrt{3}-2\sqrt{2}\)
\(=15\sqrt{2}-4\sqrt{3}-3\sqrt{2}+5\sqrt{3}-2\sqrt{2}\)
\(=10\sqrt{2}+\sqrt{3}\)
17, \(2\sqrt{75}-3\sqrt{12}+\sqrt{27}\)
\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)
\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)
\(=7\sqrt{3}\)
18, \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
\(=2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
\(=4\sqrt{3}\)
19, \(\sqrt{27}-\sqrt{12}+\sqrt{75}+\sqrt{147}\)
\(=3\sqrt{3}-2\sqrt{3}+5\sqrt{3}+7\sqrt{3}\)
\(=13\sqrt{3}\)
20, \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
\(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}\)
\(=-8\sqrt{3}\)
21, \(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\)
\(=6.\frac{2\sqrt{2}}{3}-5.\frac{4\sqrt{2}}{5}+14.\frac{3\sqrt{2}}{7}\)
\(=4\sqrt{2}-4\sqrt{2}+6\sqrt{2}\)
\(=6\sqrt{2}\)
Điều kiện xác định: \(x\ge0\).
Lấy \(x_1>x_2\ge0\).
\(f\left(x_1\right)-f\left(x_2\right)=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}>0\)
Do đó hàm số đồng biến.
Lần lượt thế tọa độ các điểm vào hàm số ban đầu, ta thấy điểm \(C\left(9,3\right)\)thỏa mãn nên nó thuộc đồ thị của hàm số đã cho, các điểm khác không thuộc.
xin lỗi nhầm
Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
Bạn tự kẻ hình nhé .
Áp dụng định lý Pytago cho \(\Delta ABC\)vuông tại A ,có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=\sqrt{400}=20\)
Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại A có AH là đường cao ,có :
\(AB^2=BH.BC\)
\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
Áp dụng tính chất đường phân giác trong \(\Delta ABC\)có AD là phân giác :
\(\frac{BD}{AB}=\frac{CD}{AC}\Rightarrow\frac{BD}{12}=\frac{CD}{16}\)
\(\Rightarrow\frac{BD}{12}=\frac{CD}{16}=\frac{BD+CD}{12+16}=\frac{BC}{28}=\frac{20}{28}=\frac{5}{7}\)
\(\Rightarrow BD=12.\frac{5}{7}=\frac{60}{7}\)
Ta có : \(BH=7,2< \frac{60}{7}=BD\)
\(\Rightarrow H\)nằm giữa B và D
\(\Rightarrow HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}\)
Áp dụng định lí Pytago cho \(\Delta AHD\)vuông tại H ,có:
\(AD=\sqrt{AH^2+HD^2}=\sqrt{\left(7,2\right)^2+\left(\frac{48}{35}\right)^2}\approx7,33\)
a) \(A=\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\)
\(=\sqrt{5}-2+2\sqrt{2}-\sqrt{5}=2\sqrt{2}-2\)
b) \(B=\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)
\(=2\sqrt{2}-7+3-2\sqrt{2}=-4\)
c) \(C=\sqrt{9+6\sqrt{2}+2}-\sqrt{9-6\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left(3+\sqrt{2}\right)-\left(3-\sqrt{2}\right)=2\sqrt{2}\)
d) \(D=\sqrt{9+12\sqrt{2}+8}+\sqrt{9-12\sqrt{2}+8}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left(3+2\sqrt{2}\right)-\left(3-2\sqrt{2}\right)=4\sqrt{2}\)
\(A=\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\)
\(A=7.12+\sqrt{4}\)
\(A=84+2\)
\(A=86\)
\(B=72:\sqrt{2^2.36.3^2}-\sqrt{225}\)
\(B=72:\sqrt{36.36}-15\)
\(B=2-15=-13\)
Đk: \(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)
Ta có: \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
VT = \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\ge0\) => >VP = 2x + 2 \(\ge\)0 => x \(\ge\)-1
mà \(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\) => \(x\ge1\)
<=> \(\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
<=> \(\sqrt{x+1}.\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
<=> \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
<=> \(2x+6+x-1+2\sqrt{2\left(x-1\right)\left(x+3\right)}=4x+4\)
<=> \(2\sqrt{2\left(x-1\right)\left(x+3\right)}=x-1\)
<=> \(\sqrt{x-1}.\left(2\sqrt{2\left(x+3\right)}-\sqrt{x-1}\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\2\sqrt{2\left(x+3\right)}=\sqrt{x-1}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\8x+24=x-1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{25}{7}\left(ktm\right)\end{cases}}\)
Vậy S = {1}