làm thế nào để chia đều 9 quả cam cho 12 người. sao cho mỗi quả không được chia thành 6 phần bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAH vuông tại H và ΔBEH vuông tại E có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)
Do đó: ΔBAH=ΔBEH
b: Vì I là giao điểm của BH và DC
nên \(I\in BH\)
=>B,H,I thẳng hàng
Sau khi vận chuyển và bảo quản, cửa hàng còn số bơ là:
\(600-138=462\left(kg\right)\)
Số tiền cửa hàng thu được từ số bơ còn lại là:
\(60000\cdot462=27720000\) (đồng)
Tổng số tiền cửa hàng nhập vào là:
\(27720000:\left(100\%+20\%\right)=23100000\) (đồng)
Cửa hàng nhập mỗi kg bơ với giá:
\(23100000:600=38500\) (đồng)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔDBE và ΔDHA có
DB=DH
\(\widehat{BDE}=\widehat{HDA}\)(hai góc đối đỉnh)
DE=DA
Do đó: ΔDBE=ΔDHA
=>BE=HA
Xét ΔBAE có BA+BE>AE
=>AC+AH>2AD
c: Ta có: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
\(CD=CH+HD=CH+\dfrac{1}{2}HB=\dfrac{3}{2}HC\)
=>\(CH=\dfrac{2}{3}CD\)
Xét ΔCAE có
CD là đường trung tuyến
\(CH=\dfrac{2}{3}CD\)
Do đó: H là trọng tâm của ΔCAE
Xét ΔCAE có
H là trọng tâm
K là trung điểm của CE
Do đó: A,H,K thẳng hàng
a: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(-2\right)\left(m+5\right)\)
\(=4\left(m^2+2m+1\right)+8\left(m+5\right)\)
\(=4m^2+8m+4+8m+20\)
\(=4m^2+16m+24=\left(2m+4\right)^2+8>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=-2\left(m+5\right)\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=1\)
=>\(\dfrac{x_1+x_2}{x_1x_2}=1\)
=>\(\dfrac{2\left(m+1\right)}{-2\left(m+5\right)}=1\)
=>\(\dfrac{-\left(m+1\right)}{m+5}=1\)
=>-m-1=m+5
=>-2m=6
=>m=-3
c: Thay m=1 vào (1), ta được:
\(x^2-2\left(1+1\right)x-2\left(1+5\right)=0\)
=>\(x^2-4x-12=0\)
=>(x-6)(x+2)=0
=>\(\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Lời giải:
Trong 1 giờ:
Vòi A chảy được $1:3=\frac{1}{3}$ bể
Vòi B chảy được: $1:6=\frac{1}{6}$ bể
Khi mở vòi B trong 2 giờ thì được: $2\times \frac{1}{6}=\frac{1}{3}$ bể
Vòi A cần chảy thêm số phần bể để đầy bể là:
$1-\frac{1}{3}=\frac{2}{3}$ (bể)
Vòi A cần mở trong: $\frac{2}{3}: \frac{1}{3}=2$ (giờ)
a) Trên tia Ox, do OM < ON (2 cm < 8 cm) nên M nằm giữa O và N
⇒ OM + MN = ON
⇒ MN = ON - OM
= 8 - 2
= 6 (cm)
b) Do I là trung điểm của MN
⇒ MI = MN : 2
= 6 : 2
= 3 (cm)
⇒ OI = OM + MI
= 2 + 3
= 5 (cm)
a) Trên tia Ox, do OM < ON (2 cm < 8 cm) nên M nằm giữa O và N
⇒ OM + MN = ON
⇒ MN = ON - OM
= 8 - 2
= 6 (cm)
b) Do I là trung điểm của MN
⇒ MI = MN : 2
= 6 : 2
= 3 (cm)
⇒ OI = OM + MI
= 2 + 3
= 5 (cm)
Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng \(\dfrac{A}{B}\), trong đó \(A,B\) là những đa thức và \(B\ne0\)
\(A\) được gọi là tử thức (hay tử) , \(B\) được gọi là mẫu thức (hay mẫu)
\(\Rightarrow\dfrac{2+3}{x}\) là phân thức đại số.
a: TH1: B nằm giữa A và C
=>AB+BC=AC
=>BC+5=3
=>BC=-2<0
=>Loại
TH2: A nằm giữa B và C
=>BC=BA+AC=5+3=8(cm)
TH3: C nằm giữa Avà B
=>AC+CB=AB
=>CB+3=5
=>CB=2(cm)
b: Số tam giác tạo thành sẽ có 1 đỉnh là O và 2 đỉnh còn lại là 2 điểm nằm trên đường thẳng xy
Tổng số điểm trên đường thẳng xy là:
3+4=7(điểm)
Số tam giác tạo thành là \(C^2_7=21\left(tamgiác\right)\)