giải pt nghiệm nguyên
x3-y3=2xy+13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\Delta NBM~\Delta DAM\left(g.g\right)\Rightarrow\frac{NM}{DM}=\frac{BM}{AM}=\frac{1}{2}\)
\(DM=\sqrt{AM^2+AD^2}=\sqrt{\frac{4}{9}a^2+a^2}=\frac{\sqrt{13}}{3}a\)
\(DN=\frac{3}{2}DM=\frac{\sqrt{13}a}{2}\)
\(NC=\sqrt{DN^2-DC^2}=\sqrt{\frac{13}{4}a^2-a^2}=\frac{3}{2}a\)
\(\frac{1}{EC^2}=\frac{1}{DC^2}+\frac{1}{NC^2}\Rightarrow EC=\frac{3\sqrt{13}}{13}a\)
b) \(\frac{1}{DM^2}+\frac{1}{DN^2}=\frac{1}{\frac{13}{9}a^2}+\frac{1}{\frac{13}{4}a^2}=\frac{4+9}{13a^2}=\frac{1}{a^2}\)





\(G=\left(a-b\right)^4+\left(b-c\right)^4+\left(c-a\right)^4\)
\(G=\left(a^2-2ab+b^2\right)^2+\left(b^2-2bc+c^2\right)^2+\left(c^2-2ac+a^2\right)^2\)
\(G\ge\frac{\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)}{3}\)
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)(BĐT tương đương)
\(G\ge\frac{\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)}{3}\ge\frac{0}{3}=0\)
\(< =>MIN:G=0\)dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(=6^2+8^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)
\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)
Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\):
\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)
Xét tam giác \(ACQ\)vuông tại \(A\):
\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)

\(a,A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{x-5\sqrt{x}+6}\)
\(A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
\(< =>b,3⋮\sqrt{x}+1\)
lập bảng thì ra đc
\(x=4;0\)
\(x^3-y^3=2xy+13\)
\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)=2xy+13\)
\(\Leftrightarrow a^3-13=b\left(2-3a\right)\)(\(a=x-y,b=xy\))
\(\Rightarrow a^3-13⋮\left(2-3a\right)\)
\(\Rightarrow27\left(a^3-13\right)⋮\left(3a-2\right)\)
\(\Leftrightarrow27a^3-8-343=\left(3a-2\right)\left(9a^2+6a+4\right)+343⋮\left(3a-2\right)\)
suy ra \(3a-2\inƯ\left(343\right)=Ư\left(7^3\right)\)
\(\Rightarrow a\in\left\{1,3,17,115\right\}\).
Suy ra các bộ \(\left(a,b\right)\)thỏa mãn là: \(\left(1,12\right),\left(3,-2\right),\left(17,-100\right),\left(115,-4434\right)\).
Với bộ \(\left(1,12\right)\)ta có:
\(\hept{\begin{cases}x-y=1\\xy=12\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4,y=3\\x=-3,y=-4\end{cases}}\)
Tương tự với các bộ còn lại suy ra nghiệm của phương trình.