cho 2 số dương a+b\(\le\)1,Tìm GTNN của biểu thức:A=ab+\(\frac{1}{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chịu
tui lớp 4. Ông lớp 9. Giải bằng cái nịt. Search google rồi còn không làm được. Trời ơi!!! 🙄

a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)
Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)
Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)
Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có :
\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)
mà a + b + c = 0 => 2 + 2 - 4 = 0
vậy pt có 2 nghiệm
\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)

\(S=a+\frac{1}{a}=\frac{a}{9}+\frac{8a}{9}>2\sqrt{\frac{a}{9}.\frac{1}{a}}+\frac{8a}{9}=2.\frac{1}{3}+\frac{8a}{a}>\frac{2}{3}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}.\)
\(S_{min}=\frac{10}{3}=a^2=9=a=3\)
\(S=a+\frac{1}{a}=a+\frac{9}{a}-\frac{8}{a}\)
\(=\left(a+\frac{9}{a}\right)-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{a}\)(BĐT Cauchy)
\(=6-\frac{8}{a}\)
Vì \(a\ge3\Rightarrow\frac{8}{a}\le\frac{8}{3}\Rightarrow-\frac{8}{a}\ge-\frac{8}{3}\)
=> \(6-\frac{8}{a}\ge6-\frac{8}{3}=\frac{10}{3}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=\frac{9}{a}\\a=3\end{cases}}\Leftrightarrow a=3\)
Vậy MIN S = 10/3 khi a = 3
Theo bất đẳng thức Cauuchy ta có :
\(\frac{a}{b}< \left(\frac{a+b}{2}\right)< \frac{1}{4}=-ab>-\frac{1}{4}.\)
Do đó ta được biểu thức :
\(A=16ab+\frac{1}{ab}-15ab>2\sqrt{16ab.\frac{1}{ab}}-15ab>8-15.\frac{1}{4}=\frac{17}{4}\)
Dấu đẳng thức xảy ra chỉ khi \(a=b=\frac{1}{2}\)
Vậy \(A_{min}=\frac{17}{4}\)
ta có \(a+b\ge2\sqrt{ab}=>2\sqrt{ab}\le1=>ab\le\frac{1}{4}\)
ta có \(A=16ab+\frac{1}{ab}-15ab\ge2\sqrt{16ab.\frac{1}{ab}}-\frac{15}{4}=\frac{17}{4}\)
Dầu "=" xảy ả khi \(\hept{\begin{cases}a+b=1\\a+b=2\sqrt{ab}\\ab=\frac{1}{4}\end{cases}}=>a=b=\frac{1}{2}\)