Bài 12: Cho x – y = -1. Tính giá trị biểu thức: P = 2(x3 – y3) + 3 (x2 + y2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=-x^2+2x-5\)
\(=-\left(x^2-2x+5\right)\)
\(=-\left(x^2-2x+1+4\right)\)
\(=-\left(x-1\right)^2-4\)
Mà: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\Rightarrow A< 0\)
\(B=-x^2+x-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Mà: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow B< 0\)
Bạn xem lại đề phần \(C\)nhé.

a/\(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\)
\(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+1\ge1>0\)
b/\(x^2-10x+29=\left(x^2-10x+25\right)+4=\left(x-5\right)^2+4\)
\(\left(x-5\right)^2\ge0\Rightarrow\left(x-5\right)^2+4\ge4>0\)
c/

Ta có
\(\left(2m-a\right)^2+\left(3m-b\right)^2+\left(3m-c\right)^2=\)
\(=4m^2-4ma+a^2+9m^2-6mb+b^2+9m^2-6mc+c^2=\)
\(=22m^2-2m\left(2a+3b+3c\right)+a^2+b^2+c^2=\)
\(=22m^2-2m.11m+a^2+b^2+c^2=a^2+b^2+c^2\)


\(P=2.\left(x^3-y^3\right)+3.\left(x^2+y^2\right)\)
\(=2.\left(x-y\right).\left(x^2+xy+y^2\right)+3.\left(x^2+y^2\right)\)
Thay vào ta được
\(P=2.\left(-1\right).[\left(x^2-2xy+y^2\right)+3xy]+3.[\left(x^2-2xy+y^2\right)+2xy]\)
\(=-2.[\left(x-y\right)^2+3xy]+3.[\left(x-y\right)^2+2xy]\)
Thay vảo ta được
\(P=-2.[\left(-1\right)^2+3xy]+3.[\left(-1\right)^2+2xy]\)
\(=-2.\left(1+3xy\right)+3.\left(1+2xy\right)\)
\(=-2-6xy+3+6xy\)
\(=1\)