c/m:\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{8.....\sqrt{1999\sqrt{2000}}}}}}}}}< 3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bàu này quá dễ cái này lớp 6 còn còn có trong chương trình :)
Cho hai tập khác rỗng : A = (m – 1; 4], B = (-2; 2m + 2), với m ∈ Rℝ. Giá trị m để A ∩ B ⊂ (-1; 3) là:
Điều kiện để tồn tại tập hợp A, B là
{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12
Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.
Cách này là tôi tự làm trong 1 lần ở Viet Jack kiểu tham khảo chứ ko coppy mạng :)
>3.....@Chi
Điều kiện để tồn tại tập hợp A, B là
\(\hept{\begin{cases}m-1>4\\-2< 2m+2\end{cases}}\Rightarrow\hept{\begin{cases}m< 5\\m>-2\end{cases}}\Leftrightarrow-2< m< 5\)
A ∩ B ⊂ (-1; 3) \(\Leftrightarrow\hept{\begin{cases}m-1\ge-1\\2m+2\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ge0\\m\le\frac{1}{2}\end{cases}}\Leftrightarrow0\le m\le\frac{1}{2}\)
{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12
Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.
Đề ko rõ lắm bạn ạ,điểm M,N nó phải như thế nào thì mới chứng minh \(\overrightarrow{MN}=\overrightarrow{BA}\)được chứ bạn
a) Ta có: Vận tốc đầu ở đỉnh dốc = 0 ( v0= 0) quả cầu chuyển động nhanh dần đều
S = 0 + (1/2).a.t²
=> a = 2.S/t²
= 2.100/10²
= 2 m/s²
ta có:
- Quả cầu nằm ngang trên mặt phẳng và chuyển động chậm dần với gia tốc a'
- Tốc độ đầu v là tốc độ tại chân dốc, tốc độ cuối = 0
v = 0 + a.t
= 0 + 2.10
= 20 (m/s)
Ta lại có: 0² - v² = 2.a'S
=> a' = -v²/2S
= - 20²/2.50
= - 4 (m/s²) ( vật chuyển động chậm dần đều )
b) Thời gian mà vật chuyển động trên mặt phẳng ngang t' là:
0 = v - a't'
=> t' = v/a' = 20/4 = 5 (s)
Thời gian quả cầu chuyển động trong cả quá trình là:
t + t' = 10 + 5 = 15 (s)
a)* Từ đỉnh dốc vận tốc đầu = 0, quả cầu chuyển động nhanh dần
S = 0 + (1/2)at²
=> a = 2S/t² = 2*100/10² = 2 m/s²
*Trên mặt phẳng ngang quả cầu chuyển động chậm dần với gia tốc a', tốc độ đầu v là tốc độ tại chân dốc, tốc độ cuối = 0
v = 0+at = 0 + 2.10 = 20 m/s
Có: 0² - v² = 2.a'S
=> a' = -v²/2S = -20²/2.50 = -4 (m/s²) (dấu - chứng tỏ vật cđộng chậm dần)
b) thời gian chuyển động trên mặt phẳng ngang: t'
0 = v - a't' => t' = v/a' = 20/4 = 5s
thời gian của cả quá trình chuyển động: t + t' = 10 + 5 = 15s
Chúc bạn học tốt !!!
menh de tren dung hay sai? Giai thich?
voi moi n thuoc R: n(n+1)(n+2) chia het cho 6
a) \(P\left(x\right)=7x^2+2x-5\)
+) Với x = -1. Ta có: \(P\left(-1\right)=7.\left(-1\right)^2+2.\left(-1\right)-5=0\)
=> \(P\left(x\right)=7x^2+2x-5\) là mệnh đề đúng với x=-1
+) Với x =1 . Ta có: \(P\left(1\right)=7.1^2+2.1-5=4\ne0\)
=> \(P\left(x\right)=7x^2+2x-5\) là mệnh đề sai với x=1
b) Làm tương tự chọn ra hai giá trị
Có cách giải nhưng t ko chắc đâu nhá;) đã bảo đưa dạng a, b, c rồi mà cứ đưa dạng này-_-
\(VT< \sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6....}}}}}=x>0\) (vô hạn dấu căn). Ta sẽ chứng minh x < 3
Ta thấy \(x^2=\sqrt{2}.x\Rightarrow x\left(x-\sqrt{2}\right)=0\Rightarrow x=\sqrt{2}< 3\Rightarrow\text{đpcm }\)
\(x^2=2\sqrt{3\sqrt{4\sqrt{5....\sqrt{2000}}}}ma?\)