\(\frac{1}{x-5\sqrt{x}+2}\) tìm giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn thử dùng bình phương xem nhưng nó quá dài và đặt ẩn phụ thì cũng vậy nên cách này là tối ưu nhất
a) x = 25 => B = \(\frac{\sqrt{25}+3}{\sqrt{25}+1}=\frac{5+3}{5+1}=\frac{8}{6}=\frac{4}{3}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{x+2\sqrt{x}-2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
3. \(S=A.B=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+3}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)
Do \(\sqrt{x}+2\ge2\forall x\in R\) => \(\frac{1}{\sqrt{x}+2}\le\frac{1}{2}\) => \(S=1+\frac{1}{\sqrt{x}+2}\le1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra<=> x= 0
Vậy MaxS = 3/2 <=> x= 0
1. x = 4 => B = \(\frac{3}{\sqrt{4}-1}=\frac{3}{2-1}=3\)
2. \(P=A-B=\frac{6}{x-1}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}-1}\)
\(P=\frac{6+\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x-3\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}+1-4}{\sqrt{x}+1}=1-\frac{4}{\sqrt{x}+1}\)
Do \(\sqrt{x}+1\ge1\forall x\in R\) => \(\frac{4}{\sqrt{x}+1}\le4\)=> \(1-\frac{4}{\sqrt{x}+1}\ge1-4=-3\)
=> \(P\ge-3\) => \(\frac{1}{P}\le-\frac{1}{3}\)
Dấu "=" xảy ra<=> x = 0
Vậy Max1/P = -1/3 <=> x = 6
a, Có ∠BAH= ∠BCA (vì cùng phụ với ∠HAC)
=> ∠BAH+ ∠HAD= ∠BCA + ∠DAC (vì AD là tia phân giác ∠HAC)
=> ∠BAD= ∠BCA + ∠DAC
Xét ΔADC có ∠ADB là góc ngoài tại D => ∠ADB= ∠BCA + ∠DAC
=> ∠BAD= ∠ADB
=> ΔABD cân tại B
b, Xét ΔABD cân tại B => AB= BD
Xét ΔABC vuông tại A
=> AB²= BH. BC
= (BD- HD). BC
= (AB- 6). 25
= 25 AB- 150
=> AB²- 25AB+ 150= 0
<=> (AB-15)(AB-10)= 0
<=> AB= 15 hoặc AB= 10
Vậy AB= 15cm, hoặc AB= 10 cm
Hình bạn tự vẽ nhé !
Xét tam giác ABC vuông tại A có đường cao AH
=> \(AB^2=BH.BC\) ( Hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow BC=\frac{AB^2}{BH}=\frac{9^2}{5,4}=\frac{81}{5,4}=15\left(cm\right)\)
\(\Leftrightarrow CH=BC-BH=15-5,4=9,6\left(cm\right)\)
\(\Leftrightarrow AH^2=BH.CH\) ( Hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow AH^2=5,4.9,6=51,84\Leftrightarrow AH=7,2\left(cm\right)\)
\(\Leftrightarrow AC^2=CH.BC\) ( Hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow AC^2=15.9,6=144\Leftrightarrow AC=12\left(cm\right)\)
Đáp số : ...........
$\begin{array}{l} {x^3} + a{x^2} + bx + c = \left( {x + 1} \right)P\left( x \right) + 2021\\ \Rightarrow P\left( { - 1} \right) = 2021 \Rightarrow - 1 + a - b + c = 2021\\ {x^3} + a{x^2} + bx + c = \left( {x - 2} \right)P\left( x \right) + 2030\\ \Rightarrow P\left( 2 \right) = 2030 \Rightarrow 8 + 4a + 2b + c = 2030 \end{array}$
$\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} 4a + 2b + c = 2022\\ a - b + c = 2022 \end{array} \right. \Rightarrow 4a + 2b + c = a - b + c\\ \Rightarrow 3a + 3b = 0 \Leftrightarrow a = - b\\ \Rightarrow K = \left( {{a^{2021}} + {b^{2021}}} \right)\left( {{a^{2022}} + {b^{2022}}} \right) = \left( {{a^{2021}} - {a^{2021}}} \right)\left( {{a^{2022}} + {b^{2022}}} \right)\\ = 0\left( {{a^{2022}} + {b^{2022}}} \right) = 0 \end{array}$
b) Đặt $n^2-n+5=k^2(k\in \mathbb Z)$
$\begin{array}{l} \Rightarrow 4{n^2} - 4n + 20 = 4{k^2}\\ \Rightarrow {\left( {2n - 1} \right)^2} + 19 = {\left( {2k} \right)^2}\\ \Rightarrow \left( {2k - 2n + 1} \right)\left( {2k + 2n - 1} \right) = 19 \end{array}$
$\begin{array}{l} k \in \mathbb Z,n \in \mathbb Z \to 2k - 2n + 1,2k + 2n - 1 \in \mathbb Z\\ \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = 1\\ 2k + 2n - 1 = 19 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 2k = 2n\\ 2n + 2n = 20 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = \dfrac{{20}}{3}\\ n = \dfrac{{10}}{3} \end{array} \right.\left( L \right) \end{array}$
$\begin{array}{l} \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = - 1\\ 2k + 2n - 1 = - 19 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2k = 2n - 2\\ 2k + 2n = - 18 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = - 5\\ n = - 4 \end{array} \right.\left( {tm} \right)\\ \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = 19\\ 2k + 2n - 1 = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = 5\\ n = - 4 \end{array} \right.\left( {tm} \right)\\ \bullet \left\{ \begin{array}{l} 2k - 2n + 1 = - 19\\ 2k + 2n - 1 = - 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k = - 5\\ n = 5 \end{array} \right.\left( {tm} \right) \end{array}$
Vậy $n=-4, n=5$ thỏa mãn yêu cầu bài toán.
Ta có : x2 + y2 \(\ge\)(x + y)2/2
=> (x + y)2 \(\le\)2 => \(-\sqrt{2}\le x+y\le\sqrt{2}\)
Áp dụng bđt bunhiacopxki, ta có:
\(\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\le\left(x^2+y^2\right)\left(y+1+x+1\right)\le\sqrt{2}+2\)
=> \(x\sqrt{y+1}+y\sqrt{y+1}\le\sqrt{\sqrt{2}+2}\)
Vậy Max \(x\sqrt{y+1}+y\sqrt{x+1}=\sqrt{2+\sqrt{2}}\) <=> \(x=y=\frac{\sqrt{2}}{2}\)
chỉ có max thôi bạn nhé
Ta có : \(x-5\sqrt{x}+2=x-2.\frac{5}{2}\sqrt{x}+\frac{25}{4}-\frac{17}{4}\)
\(=\left(\sqrt{x}+\frac{5}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)
\(\frac{1}{\left(\sqrt{x}+\frac{5}{2}\right)^2-\frac{17}{4}}\le\frac{1}{-\frac{17}{4}}=-\frac{4}{17}\)
Dấu ''='' không xảy ra vì \(\sqrt{x}+\frac{5}{2}\ne0\)