K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2024

Ta thấy: \(2024\equiv1\) (\(mod\) \(2023\))
\(20242024\equiv1909\) (\(mod\) \(2023\))
...
\(2024...2024:2023\) dư một số nào đó là một trong các số từ \(1\) đến \(2022\) (\(2023\) số).
* Xét \(2024\) số: \(2024;20242024;...;20242024...2024\) (Gồm \(2024\) bộ số \(2024\))
 + Lấy \(2024\) số trên chia cho \(2023\), ta có \(2024\) số dư từ \(0\) đến \(2022\).
\(\Rightarrow\) Tồn tại hai số chia cho \(2023\) có cùng số dư.
Giả sử hai số đó là \(a=2024...2024\) (\(i\) bộ số \(2024\)) và \(b=2024...2024\) (\(j\) bộ số \(2024\)\(\left(1\le i\le j\le2024\right)\)
\(a-b=2024...2024\cdot10^{4i}\) (\(j-i\) bộ số \(2024\)) chia hết cho \(2023\)
\(ƯCLN\left(10^{4i};2023\right)=1\)
\(\Rightarrow2024...2024\) (\(j-i\) bộ số \(2024\)) chia hết cho \(2023\) \(\left(đpcm\right)\).

NV
22 tháng 2 2024

\(x^4-3x+2=x\left(x^3+ax^2+bx-2\right)-\left(x^3+ax^2+bx-2\right)\)

\(\Rightarrow x^4-3x+2=x^4+\left(a-1\right)x^3+\left(b-a\right)x^2-\left(b+2\right)x+2\)

Đồng nhất hệ số 2 vế ta được:

\(\left\{{}\begin{matrix}a-1=0\\b-a=0\\b+2=3\end{matrix}\right.\) \(\Rightarrow a=b=1\)

22 tháng 2 2024

\(x^4-3x+2=\left(x-1\right)\left(x^3+ax^2+bx-2\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-2\right)=\left(x-1\right)\left(x^3+ax^2+bx-2\right)\)
\(\Rightarrow x^3+x^2+x-2=x^3+ax^2+bx-2\)
\(\Rightarrow1\cdot x^2+1\cdot x=ax^2+bx\)
\(\Rightarrow a=1\) và \(b=1\)

22 tháng 2 2024

a) Khi sờ tay vào mặt bàn ta cảm thấy mặt bàn nhôm lạnh hơn mặt bàn gỗ vì nhôm dẫn nhiệt tốt hơn gỗ nên khi sờ vào bàn nhôm ta mất nhiệt lượng nhiều hơn khi ta sờ tay vào bàn gỗ

b)vì khi nước sôi, nước sẽ nở lên vì nhiệt đồng thời thể tích cũng tăng lên. Kèm theo đó là nước sôi sẽ có bọt khí thoát ra từ đáy ấm nước, làm nước trên mặt bị động mạnh dẫn đến nước dễ bắn ra ngoài.
22 tháng 2 2024

Một mạch điện kín là đường dẫn liên tục, không có sự liên tục không có sự liên tục trong mạch hở. Mạch kín có tính liên tục. Trong mạch hở, dòng điện không thể chạy trong mạch, tức là cường độ trong dòng điện bằng không

22 tháng 2 2024

Dòng điện là dòng các điện tích dịch chuyển có hướng.

VD:Đèn điện sáng, quạt điện quay và điều hòa  hoạt động khi có dòng điện chạy qua.

22 tháng 2 2024

Dòng điện là dòng chuyển dịch có hướng của các hạt mang điện thường là các electron ở trong môi trường nào đó như kim loại, chất điện phân, chất khí hay chất bán dẫn.

Vd:Bếp điện ,quạt điện ,đèn điện

22 tháng 2 2024

\(B=3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\\\Rightarrow4A=12x^2+12y^2+4z^2+20xy-12yz-12xz-8x-8y+12\\\\=[(9x^2+18xy+9y^2)-(12xz+12yz)+4z^2]+[(2x^2+4xy+2y^2)-(8x+8y)+8]+(x^2-2xy+y^2)+4\\=[(3x+3y)^2-2\cdot(3x+3y)\cdot2z+(2z)^2]+[2(x^2+2xy+y^2)-8(x+y)+8]+(x-y)^2+4\\=(3x+3y-2z)^2+2[(x+y)^2-4(x+y)+4]+(x-y)^2+4\\=(3x+3y-2z)^2+2(x+y-2)^2+(x-y)^2+4\)

Ta thấy: \(\left\{{}\begin{matrix}\left(3x+3y-2z\right)^2\ge0\forall x,y,z\\2\left(x+y-2\right)^2\ge0\forall x,y\\\left(x-y\right)^2\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left(3x+3y-2z\right)^2+2\left(x+y-2\right)^2+\left(x-y\right)^2+4\ge4\forall x,y,z\)

\(\Leftrightarrow4B\ge4\Leftrightarrow B\ge1\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}3x+3y-2z=0\\x+y-2=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x\\2x=2\\2z=6x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=3\end{matrix}\right.\)

Vậy \(Min_B=1\) khi \(x=y=1;z=3\).

\(Toru\)

a: Xét ΔBAC có AM là phân giác

nên \(\dfrac{BM}{MC}=\dfrac{AB}{AC}\)

=>\(\dfrac{BM}{MC}=\dfrac{a}{b}\)

=>\(\dfrac{BM}{a}=\dfrac{MC}{b}\)

mà BM+MC=BC=a

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BM}{a}=\dfrac{MC}{b}=\dfrac{BM+MC}{a+b}=\dfrac{a}{a+b}\)

=>\(BM=\dfrac{a\cdot a}{a+b}=\dfrac{a^2}{a+b}\)

Xét ΔBCA có CN là phân giác

nên \(\dfrac{BN}{NA}=\dfrac{BC}{CA}\)

=>\(\dfrac{BN}{NA}=\dfrac{a}{b}\)

=>\(\dfrac{BN}{NA}=\dfrac{BM}{MC}\)

Xét ΔBAC có \(\dfrac{BN}{NA}=\dfrac{BM}{MC}\)

nên MN//AC

b: Xét ΔBAC có MN//AC

nên \(\dfrac{MN}{AC}=\dfrac{BM}{BC}\)

=>\(\dfrac{MN}{b}=\dfrac{a^2}{a+b}:a=\dfrac{a}{a+b}\)

=>\(MN=\dfrac{a\cdot b}{a+b}\)

a: loading...

b: Phương trình hoành độ giao điểm là:

2x-4=x+4

=>2x-x=4+4

=>x=8

Thay x=8 vào y=x+4, ta được:

y=8+4=12

Vậy: Q(8;12)

Tọa độ N là:

\(\left\{{}\begin{matrix}x=0\\y=2\cdot0-4=-4\end{matrix}\right.\)

Vậy: N(0;-4)

Tọa độ M là:

\(\left\{{}\begin{matrix}x=0\\y=0+4=4\end{matrix}\right.\)

Vậy: M(0;4)

M(0;4); N(0;-4); Q(8;12)

\(MN=\sqrt{\left(0-0\right)^2+\left(-4-4\right)^2}=8\)

\(MQ=\sqrt{\left(8-0\right)^2+\left(12-4\right)^2}=\sqrt{8^2+8^2}=8\sqrt{2}\)

\(NQ=\sqrt{\left(8-0\right)^2+\left(12+4\right)^2}=\sqrt{8^2+16^2}=8\sqrt{5}\)

Xét ΔMNQ có \(cosMNQ=\dfrac{NM^2+NQ^2-MQ^2}{2\cdot NM\cdot NQ}=\dfrac{256}{2\cdot8\cdot8\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

=>\(sinMNQ=\sqrt{1-\left(\dfrac{2}{\sqrt{5}}\right)^2}=\dfrac{1}{\sqrt{5}}\)

Diện tích ΔMNQ là:

\(S_{MNQ}=\dfrac{1}{2}\cdot NM\cdot NQ\cdot sinMNQ\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{5}}\cdot8\cdot8\sqrt{5}=\dfrac{64}{2}=32\)

a: Để \(f\left(x\right)=\dfrac{2}{\left|x\right|-2}\) có nghĩa thì \(\left|x\right|-2\ne0\)

=>\(\left|x\right|\ne2\)

=>\(x\in R\backslash\left\{2;-2\right\}\)

b: Để \(f\left(x\right)=\dfrac{1}{2-x}+\dfrac{1}{x+3}\) có nghĩa thì \(\left\{{}\begin{matrix}2-x\ne0\\x+3\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-3\end{matrix}\right.\)