K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 giờ trước (7:18)

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


2 giờ trước (10:28)

Rất đỉnh

15 giờ trước (21:00)

-4/7

15 giờ trước (21:15)

Giải:

Số lớn nhất có 5 chữ số khác nhau được lập từ các chữ số đã cho là: 86530

Vì số cần tìm là số lẻ nên chữ số hàng đơn vị phải là số lẻ nên ta đổi chỗ chữ số 0 cho chữ số 3 ở số: 86530 ta được số thỏa mãn đề bài là: 86503

Đáp số: 86503


16 giờ trước (20:33)

1/4 = 0,25

Như vậy 3/4 = 3 * 1/4 = 0,75

Còn tại sao 1/4 = 0,25 thì bạn hiểu là 1 cái bánh chia ra bốn phần bằng nhau thì mỗi miếng bánh sẽ có giá trị là 0,25 để khi tổng lại sẽ có giá trị là 1

16 giờ trước (20:49)

\(\frac34\) = \(\frac{3\times25}{4\times25}\) = \(\frac{75}{100}\) = 0,75

9 tháng 9

Rất đỉnh

9 tháng 9

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


23 giờ trước (13:37)

hay

9 tháng 9

Olm chào em, khi đăng câu hỏi lên diễn đàn Olm, em cần đăng đầy đủ nội dung và yêu cầu, để nhận được sự trợ giúp tốt nhất từ cộng đồng Olm em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.

a: Xét tứ giác AEHF có \(\hat{AEH}+\hat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,F cùng thuộc (Q)

Xét tứ giác BFHD có \(\hat{BFH}+\hat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CDHE có \(\hat{CDH}+\hat{CEH}=90^0+90^0=180^0\)

nên CDHE là tứ giác nội tiếp

Ta có: \(\hat{FEH}=\hat{FAH}\) (AEHF nội tiếp)

\(\hat{DEH}=\hat{DCH}\) (DCEH nội tiếp)

\(\hat{FAH}=\hat{DCH}\left(=90^0-\hat{ABC}\right)\)

nên \(\hat{FEH}=\hat{DEH}\)

=>EH là phân giác của góc FED

Ta có: \(\hat{FDH}=\hat{FBH}\) (BFHD nội tiếp)

\(\hat{EDH}=\hat{ECH}\) (HECD nội tiếp)

\(\hat{FBH}=\hat{ECH}\left(=90^0-\hat{BAC}\right)\)

nên \(\hat{FDH}=\hat{EDH}\)

=>DH là phân giác của góc FDE

Xét ΔDFE có

DH,EH là các đường phân giác

DH cắt EH tại H

Do đó: H là tâm đường tròn nội tiếp ΔDEF

=>H cách đều ba cạnh của ΔDEF

b: Xét ΔQAF có \(\hat{FQH}\) là góc ngoài tại đỉnh Q

nên \(\hat{FQH}=\hat{QFA}+\hat{QAF}=2\cdot\hat{QAF}\)

Xét ΔQAE có \(\hat{HQE}\) là góc ngoài tại đỉnh Q

nên \(\hat{HQE}=\hat{QAE}+\hat{QEA}=2\cdot\hat{QAE}\)

\(\hat{FQE}=\hat{FQH}+\hat{EQH}\)

\(=2\left(\hat{QAF}+\hat{QAE}\right)=2\cdot\hat{EAF}=2\cdot\hat{BAC}\)

\(\hat{FDE}=\hat{FDH}+\hat{EDH}=2\cdot\hat{FDH}=2\cdot\hat{ABE}\)

\(\hat{FQE}+\hat{FDE}=2\left(\hat{BAC}+\hat{ABE}\right)=2\cdot90^0=180^0\)

=>FQED nội tiếp

c: M đối xứng H qua BC

=>BC⊥HM tại trung điểm của HM

mà BC⊥HD tại D

và HM,HD có điểm chung là H

nên H,D,M thẳng hàng

=>HM⊥BC tại D và D là trung điểm của HM

Xét ΔBHM có

BD là đường cao

BD là đường trung tuyến

Do đó: ΔBHM cân tại B

Xét ΔCHM có

CD là đường cao

CD là đường trung tuyến

Do đó: ΔCHM cân tại C

Xét ΔBHC và ΔBMC có

BH=BM

CH=CM

BC chung

Do đó: ΔBHC=ΔBMC

=>\(\hat{BHC}=\hat{BMC}\)

\(\hat{BHC}=\hat{FHE}\) (hai góc đối đỉnh)

nên \(\hat{BMC}=\hat{FHE}\)

\(\hat{FHE}+\hat{FAE}=180^0\) (AEHF nội tiếp)

nên \(\hat{BMC}+\hat{BAC}=180^0\)

=>ABMC là tứ giác nội tiếp

=>M thuộc (O)

8 tháng 9

Khi a>b thì

-3a<-3b

2-3a<2-3b

Vậy 2-3a<2-3b

9 tháng 9

TH: a, b là số âm

a > b => -3a > -3b

=> 2 - 3a > 2 - 3b

TH: a, b là số nguyên

a > b => -3a < -3b

=> 2 - 3a < 2 - 3b

.... có thể có nhiều trường hợp xảy ra nữa ví dụ như a dương, b âm nhưng |b| > a thì khi đó 2 - 3a < 2 - 3b.

8 tháng 9

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

9 tháng 9

Rất đỉnh