Chứng minh 2n^2(n+1) + n(n+1) chia hết cho 6 với n thuộc Z.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(92452-x:5=82522\)
\(x:5=92452-82522\)
\(x:5=9930\)
\(x=9930\cdot5=49650\)
Vậy \(x=49650\)
92452- \(x\) :5 =82522
\(x\) :5 = 92452 -82522
\(x\) : 5 =9930
\(x\) = 9930x5 =49650
Vậy \(x\) = 49650


a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

Ta có: \(\left(\frac34x-0,5\right)^3=-\frac{125}{8}\)
=>\(\left(\frac34x-\frac12\right)^3=\left(-\frac52\right)^3\)
=>\(3x-\frac12=-\frac52\)
=>\(3x=-\frac52+\frac12=-\frac42=-2\)
=>\(x=-\frac23\)

a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ax//By
b: Gọi BM là tia đối của tia By
Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)
=>\(\hat{MBA}=180^0-135^0=45^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=75^0-45^0=30^0\)
Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên By//Cz
\(2n^2\left(n+1\right)+n\left(n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n+2\right)\)
=n(n+1)(n-1)+n(n+1)(n+2)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1)⋮3!=6(1)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên n(n+1)(n+2)⋮3!=6(2)
Từ (1),(2) suy ra n(n+1)(n-1)+n(n+1)(n+2)⋮6
=>\(2n^2\left(n+1\right)+n\left(n+1\right)\) ⋮6
Để chứng minh rằng biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 6 với \(n \in \mathbb{Z}\), ta cần chứng minh rằng biểu thức này chia hết cho 2 và 3, vì một số chia hết cho 6 khi và chỉ khi nó chia hết cho cả 2 và 3.
Bước 1: Chia hết cho 2
Ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Chia nó thành hai phần:
Do đó, cả hai phần của biểu thức đều chia hết cho 2, nên tổng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Bước 2: Chia hết cho 3
Tiếp theo, ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Ta sẽ xét các trường hợp với \(n m o d \textrm{ } \textrm{ } 3\) (tức là \(n\) chia cho 3 có dư 0, 1 hoặc 2).
Trường hợp 1: \(n \equiv 0 \left(\right. m o d 3 \left.\right)\)
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k \left.\right)^{2} \left(\right. 3 k + 1 \left.\right) + \left(\right. 3 k \left.\right) \left(\right. 3 k + 1 \left.\right)\)
Vì \(n = 3 k\), ta thấy cả hai phần của biểu thức đều chia hết cho 3, do đó \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)chia hết cho 3.
Trường hợp 2: \(n \equiv 1 \left(\right. m o d 3 \left.\right)\)
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k + 1 \left.\right)^{2} \left(\right. 3 k + 2 \left.\right) + \left(\right. 3 k + 1 \left.\right) \left(\right. 3 k + 2 \left.\right)\)
Ta có thể tính chi tiết từng phần, nhưng vì \(\left(\right. 3 k + 1 \left.\right) \left(\right. 3 k + 2 \left.\right)\) luôn chia hết cho 3, nên \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Trường hợp 3: \(n \equiv 2 \left(\right. m o d 3 \left.\right)\)
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k + 2 \left.\right)^{2} \left(\right. 3 k + 3 \left.\right) + \left(\right. 3 k + 2 \left.\right) \left(\right. 3 k + 3 \left.\right)\)
Cũng như các trường hợp trên, \(\left(\right. 3 k + 2 \left.\right) \left(\right. 3 k + 3 \left.\right)\) chia hết cho 3, do đó \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Kết luận:
Vì biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho cả 2 và 3, nên nó chia hết cho 6 với mọi \(n \in \mathbb{Z}\).