tổng của 2 số là 420. số lớn gấp 6 lần số bé. Tìm 2 số đó? các bạn giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

lần đầu bán, còn lại : 31 . 0,5 - 0,5 = 15 ( kg )
lần hai bán, còn lại : 15 . 0,5 - 0,5 = 7 ( kg )
vậy lần ba bán 7 kg

Gọi số trừ là x (x ∈ N*)
Theo đề ra ta có : x 3 – x = 57
=>10x + 3 – x = 57
=>9x = 54 => x = 6
Vậy hai số cần tìm là 63 và 6

Nhận thấy các số hạng trong phương trình đã cho đều chứa số chính phương nên ta sẽ lợi dụng tính chất của chúng, cụ thể là tính chất chia hết. Hơn nữa, ta thấy \(98=2\cdot7^2\) nên ta sẽ xét số dư của số chính phương với 7.
Mỗi số chính phương khi chia cho 7 sẽ chỉ có các số dư là 0, 1, 2, 4.
Chứng minh: Giả sử số chính phương đó là \(N=n^2\left(n\in N\right)\). (1)
Nếu n chia hết cho 7 thì hiển nhiên N chia hết cho 7 (chia 7 dư 0).
Nếu n chia 7 dư 1 thì \(n=7k+1\left(k\in N\right)\) thì \(N=\left(7k+1\right)^2=49k^2+14k+1\) chia 7 dư 1.
Nếu n chia 7 dư 2 thì \(n=7k+2\left(k\in N\right)\) thì \(N=\left(7k+2\right)^2=49k^2+28k+4\) chia 7 dư 4.
Nếu n chia 7 dư 3 thì \(n=7k+3\left(k\in N\right)\) thì \(N=\left(7k+3\right)^2=49k^2+42k+9\) chia 7 dư 2.
Nếu n chia 7 dư 4 thì \(n=7k+4\left(k\in N\right)\) thì \(N=\left(7k+4\right)^2=49k^2+56k+16\) chia 7 dư 2.
Nếu n chia 7 dư 5 thì \(n=7k+5\left(k\in N\right)\) thì \(N=\left(7k+5\right)^2=49k^2+70k+25\) chia 7 dư 4.
Nếu n chia 7 dư 6 thì \(n=7k+6\left(k\in N\right)\) thì \(N=\left(7k+6\right)^2=49k^2+84k+36\) chia 7 dư 1.
Như vậy ta thấy với mọi n thì \(n^2\) chia 7 chỉ có các số dư là 0, 1, 2, 4. Vậy (1) được chứng minh.
Phương trình đã cho \(6a^2+7b^2=15c^2\lrArr15c^2-6a^2=7b^2\) , suy ra \(15c^2-6a^2=7b^2\) (2)
Ta thấy \(c^2\) chia 7 dư 0, 1, 2, 4 (theo (1)) nên \(15c^2\) chia 7 dư 0, 1, 2, 4.
\(a^2\) chia 7 dư 0, 1, 2, 4 (theo (1)) nên \(6a^2\) chia 7 dư 0, 6, 5, 3.
Nhận thấy rằng \(15c^2\) và \(6a^2\) luôn có các số dư khác nhau khi chia cho 7 trừ khi cả a và c đều chia hết cho 7. Vì vậy nên để (2) xảy ra thì a và c đều phải chia hết cho 7, suy ra \(abc\) chia hết cho 49. (3)
Bây giờ ta chỉ việc chứng minh \(abc\) chia hết cho 2. Giả sử trong 3 số a, b, c không có số nào chẵn thì \(a^2,b^2,c^2\) chia 4 chỉ có thể dư 1 (tính chất của số chính phương). Do đó xét phương trình đã cho \(6a^2+7b^2=15c^2\) thì vế trái chia 4 dư 13 (tức là dư 1) còn vế phải chia 4 dư 15 (tức là dư 3), vô lý. Vậy điều giả sử là sai, suy ra phải có ít nhất 1 trong 3 số a, b, c là số chẵn, hay \(abc\) chia hết cho 2. (4)
Do \(ƯCLN\left(2,49\right)=1\) nên từ (3) và (4), ta suy ra \(abc\) chia hết cho \(2\cdot49=98\). Ta có đpcm.


Phép vị tự tâm A tỉ số k biến B thành C
=>\(\overrightarrow{AC}=k\cdot\overrightarrow{AB}\)
\(\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=\overrightarrow{BA}+k\cdot\overrightarrow{AB}=\overrightarrow{BA}-k\cdot\overrightarrow{BA}=\overrightarrow{BA}\cdot\left(1-k\right)\)
=>Phép vị tự tâm B biến A thành C với tỉ số là 1-k
=>Chọn C
cùng là số vậy là thể là 186
số lớn là 360
số bé là 60