Trả lời giúp tôi câu này cho tgiac ABC vuông tại A có AB <AC, đường cao AH. Trên tia AH lấy điểm E sao cho H nằm giữa A và E. Qua E kẻ đường thẳng song song vs BC cắt tia AB kéo dài tại F. Từ E kẻ đường thẳng vuông góc vs EB cắt AC tại K (K nằm gữa A và C)
=> chứng minh AF.BE=BK.EF
ét o ét plzzz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac12+\frac13+\frac14+\frac15+\frac16+\frac17+\frac18+\frac19\)
\(=\left(\frac12+\frac13+\frac16\right)+\left(\frac14+\frac18\right)+\left(\frac15+\frac17+\frac19\right)\)
\(=1+\frac28+\frac18+\left(\frac{63}{315}+\frac{45}{315}+\frac{35}{315}\right)\)
\(=1+\frac38+\frac{143}{315}=\frac{11}{8}+\frac{143}{315}=\frac{11\cdot315+143\cdot8}{8\cdot315}=\frac{4609}{2520}\)

(56 x 35 + 56 x 18) : 53
= 56 x (35 + 18) : 53
= 56 x 53 : 53
= 56 x (53 : 53)
= 56 x 1
= 56
( 56 x 35 + 56 x 18 ) : 53
= ( 56 x ( 35 + 18) ) : 53
= ( 56 x 53 ) : 53
= 56 x ( 53 : 53)
= 56 x 1
=56

Giải:
Gọi thời gian tổ một hoàn thành công việc là \(x\)(giờ) \(x>0\)
Thời gian tổ hai hoàn thành công việc là: \(x+\) 6 (giờ)
Trong một giờ tổ một làm được là:
1 : \(x\) = \(\frac{1}{x}\)(giờ)
Trong hai giờ tổ hai làm được là:
1 : (\(x+6\)) = \(\frac{1}{x+6}\) (giờ)
Trong một giờ hai tổ cùng làm được:
\(\frac{1}{x}\) + \(\frac{1}{x+6}\) = \(\frac{2x+6}{x\left(x+6\right)}\)
Theo bài ra ta có phương trình:
1 : \(\frac{2x+6}{x\left(x+6\right)}\) = 4
\(\frac{x\left(x+6\right)}{2x+6}\) = 4
\(x^2+6x\) = 4.(\(2x+6\))
\(x^2+6x\) = 8\(x\) + 24
\(x^2\) + 6\(x\) - 8\(x\) - 24 = 0
\(x^2\) - (8\(x-6x\)) - 24 = 0
\(x^2-2x\) - 24 = 0
Δ' = 1 - (-24) = 25 > 0
Phương trình có hai nghiệm phân biệt:
\(x_1\) = [ -(-1) + \(\sqrt{25}\) ]: = 6 (nhận)
\(x_2\) = [-(-1) - \(\sqrt{25}\) ] = - 4 (loại)
Thời gian đội một làm một mình xong công việc là: 6 giờ
Thời gian đội hai làm một mình xong công việc là:
6 + 6 = 12 (giờ)
Kết luận: Đội một làm một mình xong công việc sau 6 giờ
Đội hai làm một mình xong công việc sau 12 giờ
Giải:
Gọi thời gian tổ một hoàn thành công việc là \(x\)(giờ) \(x > 0\)
Thời gian tổ hai hoàn thành công việc là: \(x +\) 6 (giờ)
Trong một giờ tổ một làm được là:
1 : \(x\) = \(\frac{1}{x}\)(giờ)
Trong hai giờ tổ hai làm được là:
1 : (\(x + 6\)) = \(\frac{1}{x + 6}\) (giờ)
Trong một giờ hai tổ cùng làm được:
\(\frac{1}{x}\) + \(\frac{1}{x + 6}\) = \(\frac{2 x + 6}{x \left(\right. x + 6 \left.\right)}\)
Theo bài ra ta có phương trình:
1 : \(\frac{2 x + 6}{x \left(\right. x + 6 \left.\right)}\) = 4
\(\frac{x \left(\right. x + 6 \left.\right)}{2 x + 6}\) = 4
\(x^{2} + 6 x\) = 4.(\(2 x + 6\))
\(x^{2} + 6 x\) = 8\(x\) + 24
\(x^{2}\) + 6\(x\) - 8\(x\) - 24 = 0
\(x^{2}\) - (8\(x - 6 x\)) - 24 = 0
\(x^{2} - 2 x\) - 24 = 0
Δ' = 1 - (-24) = 25 > 0
Phương trình có hai nghiệm phân biệt:
\(x_{1}\) = [ -(-1) + \(\sqrt{25}\) ]: = 6 (nhận)
\(x_{2}\) = [-(-1) - \(\sqrt{25}\) ] = - 4 (loại)
Thời gian đội một làm một mình xong công việc là: 6 giờ
Thời gian đội hai làm một mình xong công việc là:
6 + 6 = 12 (giờ)
Kết luận: Đội một làm một mình xong công việc sau 6 giờ
Đội hai làm một mình xong công việc sau 12 giờ

6A:
a: \(\frac{3}{x^2-3x}=\frac{3}{x\left(x-3\right)}=\frac{3\cdot2}{2x\left(x-3\right)}=\frac{6}{2x\left(x-3\right)}\)
\(\frac{5}{2x-6}=\frac{5}{2\left(x-3\right)}=\frac{5\cdot x}{2\left(x-3\right)\cdot x}=\frac{5x}{2x\left(x-3\right)}\)
b: \(\frac{3}{x^2-4}=\frac{3}{\left(x-2\right)\left(x+2\right)}=\frac{3\cdot\left(x-2\right)}{\left(x-2\right)\left(x-2\right)\left(x+2\right)}=\frac{3x-6}{\left(x-2\right)^2\cdot\left(x+2\right)}\)
\(\frac{x}{x^2-4x+4}=\frac{x}{\left(x-2\right)^2}=\frac{x\cdot\left(x+2\right)}{\left(x-2\right)^2\cdot\left(x+2\right)}\)
6B:
a: \(\frac{5x}{2x+8}=\frac{5x}{2\left(x+4\right)}=\frac{5x\cdot3}{2\cdot3\cdot\left(x+4\right)}=\frac{15x}{6\left(x+4\right)}\)
\(\frac{x+2}{3x+12}=\frac{x+2}{3\left(x+4\right)}=\frac{\left(x+2\right)\cdot2}{3\cdot\left(x+4\right)\cdot2}=\frac{2x+4}{6\left(x+4\right)}\)
b: \(\frac{7}{x^2-6x+9}=\frac{7}{\left(x-3\right)^2}=\frac{7\cdot3x}{3x\left(x-3\right)^2}=\frac{21x}{3x\left(x-3\right)^2}\)
\(\frac{x}{3x^2-9x}=\frac{x}{3x\left(x-3\right)}=\frac{x\left(x-3\right)}{3x\left(x-3\right)\left(x-3\right)}=\frac{x^2-3x}{3x\left(x-3\right)^2}\)
7A:
a: \(\frac{10}{x+3}=\frac{10\cdot2\cdot\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}=\frac{20x-60}{2\left(x+3\right)\left(x-3\right)}\)
\(\frac{5}{2x-6}=\frac{5}{2\left(x-3\right)}=\frac{5\cdot\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{5x+15}{2\left(x-3\right)\left(x+3\right)}\)
\(\frac{-1}{x^2-9}=\frac{-1}{\left(x-3\right)\left(x+3\right)}=\frac{-1\cdot2}{2\cdot\left(x-3\right)\left(x+3\right)}=-\frac{2}{2\left(x-3\right)\left(x+3\right)}\)
b: \(\frac{1}{2x-y}=\frac{4\left(x-y\right)^2}{4\left(2x-y\right)\left(x-y\right)^2}=\frac{4x^2-8xy+4y^2}{4\left(2x-y\right)\left(x-y\right)^2}\)
\(\frac{x}{4x-4y}=\frac{x}{4\left(x-y\right)}=\frac{x\left(x-y\right)\left(2x-y\right)}{4\left(x-y\right)\left(x-y\right)\left(2x-y\right)}=\frac{\left(x^2-xy\right)\left(2x-y\right)}{4\left(x-y\right)^2\cdot\left(2x-y\right)}\)
\(\frac{-1}{x^2-2xy+y^2}=\frac{-1}{\left(x-y\right)^2}=\frac{-1\cdot4\cdot\left(2x-y\right)}{4\left(2x-y\right)\left(x-y\right)^2}=\frac{-8x+4y}{4\left(2x-y\right)\left(x-y\right)^2}\)
7B:
a: \(\frac{-7}{x-4}=\frac{-7\cdot3\cdot\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\cdot3}=\frac{-21x-84}{3\left(x-4\right)\left(x+4\right)}\)
\(\frac{3}{3x+12}=\frac{3}{3\left(x+4\right)}=\frac{3\left(x-4\right)}{3\left(x+4\right)\cdot\left(x-4\right)}=\frac{3x-12}{3\left(x+4\right)\left(x-4\right)}\)
\(\frac{-5}{16-x^2}=\frac{5}{x^2-16}=\frac{5}{\left(x-4\right)\left(x+4\right)}=\frac{5\cdot3}{3\left(x-4\right)\left(x+4\right)}=\frac{15}{3\left(x-4\right)\left(x+4\right)}\)
b: \(\frac{1}{2x-y}=\frac{1\cdot\left(2x-y\right)\left(2x+y\right)}{\left(2x-y\right)\left(2x-y\right)\left(2x+y\right)}=\frac{4x^2-y^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)}\)
\(\frac{-2}{4x^2-y^2}=\frac{-2}{\left(2x-y\right)\left(2x+y\right)}=\frac{-2\cdot\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)\left(2x-y\right)}=\frac{-4x+2y}{\left(2x-y\right)^2\cdot\left(2x+y\right)}\)
\(\frac{2x^2+y^2}{4x^2-4xy+y^2}=\frac{2x^2+y^2}{\left(2x-y\right)^2}=\frac{\left(2x^2+y^2\right)\left(2x+y\right)}{\left(2x-y\right)^2\cdot\left(2x+y\right)}\)

Giải:
Gọi vận tốc trung bình của xe thứ hai là: \(x\) (km/h)
Vận tốc trung bình của xe thứ nhất là:
\(x+5\) (km/h)
Thời gian xe thứ nhất đi hết quãng đường từ Hà Nội tới Hải Phòng là:
9 giờ 40 phút - 7 giờ = 2 giờ 40 phút
2 giờ 40 phút = \(\frac83\) giờ
Thời gian xe thứ hai đi hết quãng đường từ Hà Nội tới Hải Phòng là:
2 giờ 40 phút + 20 phút = 3 giờ
Theo bài ra ta có phương trình:
(\(x+5\)) x \(\frac83\) = \(x\) x \(3\)
8\(x\) + 40 = 9\(x\)
9\(\)\(x-8x\) = 40
\(x=40\)(thỏa mãn)
Vận tốc trung bình của xe thứ hai là: 40km/h
Vận tốc trung bình của xe thứ nhất là: 40 + 5 = 45(km/h)
Kết luận: Vận tốc trung bình của xe thứ nhất là: 45km/h
Vận tốc trung bình của xe thứ hai là: 40km/h

Số tiền phải trả khi mua món hàng thứ nhất là:
125000 x (100% - 30%) = 87500 (đồng)
Số tiền phải trả khi mua món hàng thứ hai là:
300000 x (100% - 15%) = 255000 (đồng)
Số tiền phải trả khi mua món hàng thứ ba là:
692500 - 87500 - 255000 = 350000 (đồng)
Giá tiền món hàng thứ ba lúc chưa giảm giá là:
350000 : (100% - 40%) = 583333,(3)
Đáp số: 583333,(3)
Số tiền phải trả khi mua món hàng thứ nhất là:
125000 x (100% - 30%) = 87500 (đồng)
Số tiền phải trả khi mua món hàng thứ hai là:
300000 x (100% - 15%) = 255000 (đồng)
Số tiền phải trả khi mua món hàng thứ ba là:
692500 - 87500 - 255000 = 350000 (đồng)
Giá tiền món hàng thứ ba lúc chưa giảm giá là:
350000 : (100% - 40%) = 583333,(3)
Đáp số: 583333,(3)

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!
Ta có: EF//BC
AH⊥BC
Do đó: AH⊥FE tại E
=>ΔAEF vuông tại E
Xét tứ giác BEKA có \(\hat{BEK}+\hat{BAK}=90^0+90^0=180^0\)
nên BEKA là tứ giác nội tiếp
=>\(\hat{EBK}=\hat{EAK}\)
=>\(\hat{EBK}=\hat{HAC}\)
mà \(\hat{HAC}=\hat{HBA}\left(=90^0-\hat{HAB}\right)\)
và \(\hat{HBA}=\hat{AFE}\) (hai góc đồng vị, CB//EF)
nên \(\hat{EBK}=\hat{AFE}\)
Xét ΔEBK vuông tại E và ΔEFA vuông tại E có
\(\hat{EBK}=\hat{EFA}\)
Do đó: ΔEBK~ΔEFA
=>\(\frac{BK}{FA}=\frac{BE}{FE}\)
=>\(BK\cdot FE=BE\cdot FA\)