Bài 10: Cho tam giác ABC vuông tại A có AB = 3cm, BC = 5cm, Đường cao AH.
a.Tính số đo góc B, C . Tính AH, AC ? b.Gọi AE là phân giác của góc A (E BC). Tính AE.
Bài 11: Cho ABC có BC = 12cm ; góc B = 600 ; góc C = 400
a) Tính đường cao CH và cạnh AC ; b)Tính diện tích ABC(làm tròn đến chữ số thập phân thứ 2)
Bài 10 :
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=25-9=16\Rightarrow AC=4\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)cm
b, Vì AE là phân giác ^A suy ra : \(\frac{AB}{AC}=\frac{BE}{CE}\Rightarrow\frac{CE}{AC}=\frac{BE}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CE}{AC}=\frac{BE}{AB}=\frac{BC}{AB+AC}=\frac{5}{7}\Rightarrow BE=\frac{5}{7}.3=\frac{15}{7}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm
=> \(HE=BE-BH=\frac{15}{7}-\frac{9}{5}=\frac{12}{35}\)cm
Áp dụng định lí Pytago tam giác AHE vuông tại H
\(AE^2=AH^2+HE^2=\left(\frac{12}{5}\right)^2+\left(\frac{12}{35}\right)^2=\frac{288}{49}\Rightarrow AE=\frac{12\sqrt{2}}{7}\)cm