r
B=cănx-1/3- căn x - 9 căn x+5/(cănx+1)(cănx -3) - cănx/căn x+1
Rút gọn biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
\(n_{H_2}=\dfrac{3,7185}{24,79}=0,15\left(mol\right)\)
\(Na+H_2O\rightarrow NaOH+\dfrac{1}{2}H_2\)
x -------------->x --------->0,5x
\(K+H_2O\rightarrow KOH+\dfrac{1}{2}H_2\)
y------------>y--------->0,5y
\(\left\{{}\begin{matrix}23x+39y=8,5\\0,5x+0,5y=0,15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,2\\y=0,1\end{matrix}\right.\)
\(6NaOH+Fe_2\left(SO_4\right)_3\rightarrow3Na_2SO_4+2Fe\left(OH\right)_3\)
0,2------------------------------------------->\(\dfrac{1}{15}\)
\(6KOH+Fe_2\left(SO_4\right)_3\rightarrow3Na_2SO_4+2Fe\left(OH\right)_3\)
0,1------------------------------------------> \(\dfrac{1}{30}\)
\(m_{Fe\left(OH\right)_3}=\left(\dfrac{1}{15}+\dfrac{1}{30}\right).107=10,7\left(g\right)\)
A B C D E F M N K
Xét tg AEF có
AE=AF (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn...)
=> tg AEF cân tại A \(\Rightarrow\widehat{AEF}=\widehat{AFE}\) (góc ở đáy tg cân)
Ta có
\(\widehat{AEF}=\widehat{MEB}\) (góc đối đỉnh)
\(\widehat{AFE}=\widehat{KFC}\) (góc đối đỉnh)
\(\Rightarrow\widehat{MEB}=\widehat{KFC}\)
Xét tg vuông MEB và tg vuông KFC có
\(\widehat{MEB}=\widehat{KFC}\left(cmt\right)\)
=> tg MEB đồng dạng với tg KFC (g.g.g)
`(xsqrt{x} - 1)/(x + sqrt{x} + 1) ` với `x > 0; x ne 1`
`= ((sqrt{x})^3 - 1^3)/(x + sqrt{x} + 1)`
`= ((sqrt{x} -1)(x + sqrt{x} + 1))/(x + sqrt{x} + 1)`
`= sqrt{x} -1`
`(x^2 - 4sqrt{3}x + 12)/(x - 2sqrt{3}) (x ne 2sqrt{3})`
`= (x^2 - 2x . 2sqrt{3} + (2sqrt{3})^2)/(x - 2sqrt{3}) `
`= ( (x -2 sqrt{3} )^2)/(x - 2sqrt{3}) `
`= x - 2sqrt{3}`
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
\(B=\dfrac{\sqrt{x}-1}{3-\sqrt{x}}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1-\sqrt{x}}{\sqrt{x}-3}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)-9\sqrt{x}-5-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1-x-9\sqrt{x}-5-x+3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2x-6\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{-2\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2\left(\sqrt{x}+2\right)}{\sqrt{x}-3}\)