K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: 7-3x=9-x

=>-3x+x=9-7

=>-2x=2

=>x=-1

b: \(\dfrac{x+2}{3}+\dfrac{3x-1}{5}=-2\)

=>\(\dfrac{5\left(x+2\right)+3\left(3x-1\right)}{15}=-2\)

=>\(5\left(x+2\right)+3\left(3x-1\right)=-30\)

=>5x+10+9x-3=-30

=>14x+7=-30

=>14x=-37

=>\(x=-\dfrac{37}{14}\)

Bài 1:

a:

(d): y=x+2

=>Hệ số góc là a=1>0

=>Góc tạo bởi (d) với trục Ox là góc nhọn

b: (d')//(d)

=>\(\left\{{}\begin{matrix}a=1\\2\ne-2\left(đúng\right)\end{matrix}\right.\)

=>a=1

c: loading...

 

Bài 2:

a: \(x^2\left(x-2\right)+2-x=0\)

=>\(x^2\left(x-2\right)-\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x^2-1\right)=0\)

=>(x-2)(x+1)(x-1)=0

=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x-1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\\x=-1\\x=1\end{matrix}\right.\)

b: \(x^2-9x^3=x^2-9x\)

=>\(9x^3=9x\)

=>\(x^3=x\)

=>\(x^3-x=0\)

=>\(x\cdot\left(x^2-1\right)=0\)

=>x(x-1)(x+1)=0

=>\(\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

c: \(x\left(x+2\right)+x^2=-2x\)

=>\(x\left(x+2\right)+x^2+2x=0\)

=>2x(x+2)=0

=>x(x+2)=0

=>\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

d: \(\left(x+1\right)\left(x^2+4\right)=x^2+x\)

=>\(\left(x+1\right)\left(x^2+4\right)-x\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^2-x+4\right)=0\)

mà \(x^2-x+4=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}\forall x\)

nên x+1=0

=>x=-1

 

19 tháng 5 2024

sao phần a câu 1 lại có +-x hả cậu

Câu 3:

a: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

\(\widehat{EBF}\) chung

Do đó: ΔBEF~ΔBAC

b: Xét ΔEDC vuông tại D và ΔEBF vuông tại E có

\(\widehat{EDC}=\widehat{EBF}\left(=90^0-\widehat{ACB}\right)\)

Do đó: ΔEDC~ΔEBF

=>\(\dfrac{ED}{EB}=\dfrac{EC}{EF}\)

=>\(ED\cdot EF=EB\cdot EC\)

Câu 1:

a:

\(A=\dfrac{x^2-9}{x-3}=\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x+3\)

Thay x=4 vào A, ta được:

A=4+3=7

Thay x=4 vào B, ta được:

\(B=\dfrac{3}{4-3}+\dfrac{2}{4+3}+\dfrac{4^2-5\cdot4-3}{4^2-9}\)

\(=3+\dfrac{2}{7}+\dfrac{-7}{7}=3+\dfrac{2}{7}-1=2+\dfrac{2}{7}=\dfrac{16}{7}\)

b: \(B=\dfrac{3}{x-3}+\dfrac{2}{x+3}+\dfrac{x^2-5x-3}{x^2-9}\)

\(=\dfrac{3}{x-3}+\dfrac{2}{x+3}+\dfrac{x^2-5x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3\left(x+3\right)+2\left(x-3\right)+x^2-5x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x+9+2x-6+x^2-5x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}\)

c: \(A\cdot B=\left(x+3\right)\cdot\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2}{x-3}\)

Câu 4:

a: Thay m=2 vào y=2x+m-1, ta được:

y=2x+2-1=2x+1

Vẽ đồ thị:

loading...

b: Thay x=1 và y=3 vào y=2x+m-1, ta được:

m-1+2=3

=>m+1=3

=>m=2

c: Thay y=0 vào y=x-1, ta được:

x-1=0

=>x=1

Thay x=1 và y=0 vào y=2x+m-1, ta được:

\(2\cdot1+m-1=0\)

=>m+1=0

=>m=-1

Câu 2:

a: \(3\left(x-1\right)-2x+4=4\left(x-2\right)\)

=>\(4x-8=3x-3-2x+4\)

=>\(4x-8=x+1\)

=>3x=9

=>x=3

b: \(\left(x-2\right)\left(3-4x\right)+x^2-4x+4=0\)

=>\(\left(x-2\right)\left(3-4x\right)+\left(x-2\right)^2=0\)

=>\(\left(x-2\right)\left(3-4x+x-2\right)=0\)

=>(x-2)(1-3x)=0

=>\(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

c: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{4x^2}{x^2-4}\)

=>\(\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}\)

=>\(4x^2=x^2+4x+4-x^2+4x-4\)

=>\(4x^2=8x\)

=>\(x^2=2x\)

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB~ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OA+OC}{OC}=\dfrac{OB+OD}{OD}\)

=>\(\dfrac{AC}{OC}=\dfrac{BD}{OD}\)

=>\(\dfrac{DO}{BD}=\dfrac{CO}{CA}\)

b: \(AC^2-BD^2\)

\(=AD^2+DC^2-\left(AB^2+AD^2\right)\)

\(=AD^2+DC^2-AB^2-AD^2\)

\(=DC^2-AD^2\)

 

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB~ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OA+OC}{OC}=\dfrac{OB+OD}{OD}\)

=>\(\dfrac{AC}{OC}=\dfrac{BD}{OD}\)

=>\(\dfrac{DO}{BD}=\dfrac{CO}{CA}\)

b: \(AC^2-BD^2\)

\(=AD^2+DC^2-\left(AB^2+AD^2\right)\)

\(=AD^2+DC^2-AB^2-AD^2\)

\(=DC^2-AD^2\)

a: Để (d) có hệ số góc bằng -2 thì m-1=-2

=>m=-1

b: Thay x=-3 và y=0 vào (d), ta được:

\(-3\left(m-1\right)+2m=0\)

=>-3m+3+2m=0

=>3-m=0

=>m=3

c: Thay x=0 và y=2 vào (d), ta được:

0(m-1)+2m=2

=>2m=2

=>m=1

d: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m-1=-3\\2m\ne4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-2\\m\ne2\end{matrix}\right.\)

=>m=-2

19 tháng 5 2024

a) Tìm 𝑚m để 𝑑d có hệ số góc bằng -2.

Hệ số góc của đường thẳng 𝑑d𝑚−1m1. Để 𝑑d có hệ số góc bằng -2, ta giải phương trình: 𝑚−1=−2

m1=2 𝑚=−2+1

\(\Rightarrow\)m=2+1 𝑚=−1

\(\Rightarrow\)m=1

b) Tìm 𝑚m để 𝑑d cắt trục hoành tại điểm có hoành độ bằng -3.

Khi 𝑑d cắt trục hoành, 𝑦=0y=0, từ đó: (𝑚−1)𝑥+2𝑚=0

(m1)x+2m=0 (𝑚−1)(−3)+2𝑚=0

\(\Rightarrow\)(m1)(3)+2m=0 3(𝑚−1)+2𝑚=0

\(\Rightarrow\)3(m1)+2m=0 3𝑚−3+2𝑚=0

\(\Rightarrow\)3m3+2m=0 5𝑚−3=0

\(\Rightarrow\)5m3=0 5𝑚=3

\(\Rightarrow\)5m=3 𝑚=35

\(\Rightarrow\)m= 3/5

c) Tìm 𝑚m để 𝑑d cắt trục tung tại điểm có tung độ bằng 2.

Khi 𝑑d cắt trục tung, 𝑥=0x=0, khi đó: (𝑚−1)⋅0+2𝑚=2

(m1)0+2m=2

\(\Rightarrow\)2𝑚=2\(\Rightarrow\)2m=2 𝑚=1

\(\Rightarrow\)m=1

d) Tìm 𝑚m để 𝑑d song song với đường thẳng 𝑑1d
: 𝑦=−3𝑥+4y=3x+4.

Đường thẳng 𝑑d sẽ song song với 𝑑1d nếu hệ số góc của 𝑑d bằng hệ số góc của 𝑑1d:     dđ𝑚−1=−3

\(\Rightarrow\) m1=3 𝑚=−3+1

\(\Rightarrow\)m=3+1 𝑚=−2

\(\Rightarrow\)m=2

Kết luận:

a) 𝑚=−1m = -1
b) 𝑚=353/5

c) 𝑚=11
d) 𝑚=−22

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔAHB~ΔCHA

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}=90^0\)

\(\widehat{BDA}+\widehat{DAH}=90^0\)(ΔDAH vuông tại H)

mà \(\widehat{CAD}=\widehat{DAH}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

=>ΔBAD cân tại B

ΔBAD cân tại B

mà BF là đường phân giác

nên BF\(\perp\)AD tại F

Xét ΔEFA vuông tại F và ΔEHB vuông tại H có

\(\widehat{FEA}=\widehat{HEB}\)(hai góc đối đỉnh)

Do đó: ΔEFA~ΔEHB

=>\(\dfrac{EF}{EH}=\dfrac{EA}{EB}\)

=>\(EF\cdot EB=EA\cdot EH\)

c: Xét ΔBAK và ΔBDK có

BA=BD

\(\widehat{ABK}=\widehat{DBK}\)

BK chung

Do đó: ΔBAK=ΔBDK

=>\(\widehat{BAK}=\widehat{BDK}\)

=>\(\widehat{BDK}=90^0\)

=>KD\(\perp\)BC

=>KD//AH

d: Xét ΔBKD có EH//KD

nên \(\dfrac{EH}{KD}=\dfrac{BH}{BD}\)

=>\(\dfrac{EH}{KD}=\dfrac{BH}{BA}\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(\dfrac{EH}{KD}=\dfrac{BA}{BC}\)

=>\(\dfrac{EH}{BA}=\dfrac{KD}{BC}\)

AH
Akai Haruma
Giáo viên
18 tháng 5 2024

Đề hiển thị lỗi tùm lum hết trơn. Bạn xem lại nhé.