B=3/3×5+3/5×7+3/7×9+•••+3/99×101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2016}}\)
\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2017}}\)
\(\Rightarrow A-\dfrac{1}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{2017}}\)
\(\Leftrightarrow\dfrac{4A}{5}=\dfrac{1}{5}-\dfrac{1}{5^{2017}}\)
\(\Leftrightarrow A=\dfrac{1}{4}-\dfrac{1}{4.5^{2016}}< \dfrac{1}{4}\)
A = 1/5 + 1/52 + 1/53+ ......+1/52015 + 1/52016
5.A = 1+ 1/5 + 1/52 + 1/53+.......+ 1/52015
5A - A = 1 - 1/52015
4A = 1 - 1/52015
A = ( 1 - 1/52015): 4
A = 1/4 - 1/\(4.5^{2016}\) < 1/4
Đặt `A=9^2+9^3+...+9^2021+9^2022`
`=> 9A=9^3+9^4+...+9^2022+9^2023`
`=> 9A-A=(9^3+9^4+...+9^2022+9^2023)-(9^2+9^3+...+9^2021+9^2022)`
`=> 8A=9^2023-9`
`=> A=(9^2023-9)/8`
B = \(\dfrac{3}{3\times5}\) + \(\dfrac{3}{5\times7}\) + \(\dfrac{3}{7\times9}\) +.....+ \(\dfrac{3}{99\times101}\)
B = \(\dfrac{3}{2}\) x ( \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) +\(\dfrac{2}{7\times9}\) +.....+ \(\dfrac{2}{99\times101}\))
B = \(\dfrac{3}{2}\) x ( \(\dfrac{1}{3}\)- \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + .......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{101}\))
B = \(\dfrac{3}{2}\) x ( \(\dfrac{1}{3}\) - \(\dfrac{1}{101}\))
B = \(\dfrac{3}{2}\) x \(\dfrac{98}{3.101}\)
B = \(\dfrac{49}{101}\)
49/101