K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2024

O A B C H I K D M N E

a/

Xét tg vuông ABO và tg vuông ACO có

OB=OC=R; OA chung => tg ABO = tg ACO (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

Xét tg ABC có

AB=AC (2 tiếp tuyến cùng xp từ 1 điểm...) => tg ABC cân tại A

tg ABO = tg ACO (cmt) \(\Rightarrow\widehat{OAB}=\widehat{OAC}\)

\(\Rightarrow OA\perp BC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Xét tg vuông ABO có

\(OB^2=R^2=OH.OA\) (Hệ thức lượng trong tg vuông)

OA=2R (gt); OI=R => AI=R => AI=OI=R => BI=OA/2=R

c/m tương tự khi xét tg vuông ACO ta cũng có CI=R

Xét tứ giác BOCI có

BI=CI=OB=OC=R => BOCI là hình thoi => OH=HI (trong hình thoi 2 đường chéo cắt nhau tại trung điểm mỗi đường)

\(\Rightarrow OH.OA=HI.OA=OB^2=R^2\)

b/

Xét tg vuông AOB có

\(\sin OAB=\dfrac{OB}{OA}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{OAB}=30^o\)

Ta có \(\widehat{OAC}=\widehat{OAB}\left(cmt\right)\Rightarrow\widehat{OAC}=\widehat{OAB}=30^o\)

\(\Rightarrow\widehat{BAC}=\widehat{OAB}+\widehat{OAC}=30^o+30^o=60^o\)

Xét tg cân ABC có

\(\widehat{ABC}=\widehat{ACB}=\alpha\)

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=180^o-60^o=120^o\)

\(\Rightarrow2\alpha=120^o\Rightarrow\alpha=60^o\)

=> ABC là tg đều

Ta có

OH=HI (cmt)

 AI=R(cmt); OK=R

\(\Rightarrow AI+HI=OK+OH\Rightarrow AH=KH\)

Xét tg cân ABC có

\(OA\perp BC\left(cmt\right)\)

=> BH=CH (Trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)

=> ABKC là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Mà \(OA\perp BC\Rightarrow AK\perp BC\)

=> ABKC là hình thoi (hbh có 2 đường chéo vuông góc)

c/

Ta có AI=BI=CI=R (cmt) => I là tâm đường tròn ngoại tiếp tg ABC

d/

Xét (O) có

\(\widehat{CBD}=90^o\) (Góc nt chắn nửa đường tròn) \(\Rightarrow BD\perp BC\)

\(OA\perp BC\left(cmt\right)\)

=> BD//AO (cùng vuông góc với BC)

e/

Xét tg OMN có

OM=ON=R

ME=NE (gt)

\(\Rightarrow OE\perp MN\) (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)

=> B; C; E cùng nhìn AO dưới các góc = nhau và \(=90^o\)

=> B; C; E nằm trên dường tròn đường kính AO => O; E; A; B; C cùng thuộc một đường tròn

 

 

 

27 tháng 11 2024

 

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)

nên ΔOBI đều

ΔOBI đều

mà BH là đường cao

nên H là trung điểm của OI

=>OH=HI

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(HI\cdot OA=R^2\)

b: Xét ΔAOB vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔBAC đều

Ta có: HO+OK=HK

HI+IA=HA

mà HO=HI và OK=IA(=R)

nên HK=HA

=>H là trung điểm của KA

Xét tứ giác ABKC có

H là trung điểm chung của AK và BC

=>ABKC là hình bình hành

Hình bình hành ABKC có AB=AC

nên ABKC là hình thoi

c: Ta có: \(\widehat{ABI}+\widehat{OBI}=\widehat{ABO}=90^0\)

\(\widehat{HBI}+\widehat{OIB}=90^0\)(ΔBHI vuông tại H)

mà \(\widehat{OBI}=\widehat{OIB}\left(=60^0\right)\)

nên \(\widehat{ABI}=\widehat{HBI}\)

=>BI là phân giác của góc ABH

d: Xét (O) có

ΔBCD nội tiếp

CD là đường kính

Do đó: ΔBCD vuông tại B

=>BC\(\perp\)BD

mà BC\(\perp\)OA

nên BD//OA

e: ΔOMN cân tại O

mà OE là đường trung tuyến

nên OE\(\perp\)MN tại E

Ta có: \(\widehat{OEA}=\widehat{OBA}=\widehat{OCA}=90^0\)

=>O,E,A,B,C cùng thuộc đường tròn đường kính OA

26 tháng 11 2024

  12 349 - 370 - 2 349  + 1 370

= (12 349 -  2 349) + (1 370 - 370)

= 10000 + 1000

= 11 000

26 tháng 11 2024

=(12349-2349)+(1370-370)

=10000+1000

=11000

27 tháng 11 2024

trả lời :

Tổng sai hơn tổng đúng là: 158,6 – 36,83 = 121,77.

Vì bạn học sinh đã bỏ quên dấu phẩy của một số thập phân có hai chữ số ở phần thập phân nên số thập phân đó gấp lên 100 lần.

Do đó tổng tăng lên 99 lần số thập phân đó.

Vì vậy 99 lần số thập phân đó là 121,77.

Số thập phân đó là: 121,77 : 99 = 1,23.

Số thập phân còn lại là: 36,83 – 1,23 = 35,6.

Đáp số: 1,23 và 35,6.

 

27 tháng 11 2024

Xét ΔCFE vuông tại F và ΔCAB vuông tại A có

\(\widehat{FCE}\) chung

Do đó: ΔCFE~ΔCAB

=>\(\dfrac{CF}{CA}=\dfrac{CE}{CB}\)

=>\(CF\cdot CB=CE\cdot CA=\dfrac{1}{2}\cdot CA\cdot CA\)

=>\(2\cdot CF\cdot CB=CA^2\)

26 tháng 11 2024

Đây là dạng toán nâng tìm thành phần chưa biết của phép tính cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn chi tiết các em giải chi tiết dạng này bằng tư duy logic ngược như sau:

                   Giải

Số lớn nhất có một chữ số là 9

Số cần tìm là: 9 x 9 = 81

Đáp số: 81 

                      

26 tháng 11 2024

Số lớn nhất có 1 chữ số là 99

Số Chi cần tìm là:

          9+9=18

Vậy 18 là số Chi cần tìm

26 tháng 11 2024

a)11-12+13-14+15-16+17-18+19-20

=(11-12)+(13-14)+(15-16)+(17-18)+(19-20)

=-1+(-1)+(-1)+(-1)+(-1)

=-1.5=-5

b) 2².3¹-(1²⁰¹²+2021⁰)

=4.3-(1+1)

=12-2=10

26 tháng 11 2024

LGBT(Nam+Nữ)

👨‍❤️‍💋‍👨 dụng ko

26 tháng 11 2024

a; \(x\)(2\(x\) - 10) = 0

   \(\left[{}\begin{matrix}x=0\\2x-10=0\end{matrix}\right.\)

     \(\left[{}\begin{matrix}x=0\\2x=10\end{matrix}\right.\)

     \(\left[{}\begin{matrix}x=0\\x=\dfrac{10}{2}\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Vậy \(x\) \(\in\) {0; 5}

26 tháng 11 2024

b; (\(x+1\)).(\(x-2\)) = 0

   \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

   Vì \(x\) \(\in\) N nên \(x=-1\) loại

Vậy \(x\) = 2

27 tháng 11 2024

Ta có: \(\widehat{AOD}+\widehat{DOB}=180^0\)(hai góc kề bù)

=>\(5x+4x=180^0\)

=>\(9x=180^0\)

=>\(x=20^0\)

Ta có: \(\widehat{COB}=\widehat{AOD}\)(hai góc đối đỉnh)

mà \(\widehat{AOD}=5x=5\cdot20^0=100^0\)

nên \(\widehat{COB}=100^0\)

Ta có: \(\widehat{AOC}+\widehat{COB}=180^0\)(hai góc kề bù)

=>\(\widehat{AOC}=180^0-100^0=80^0\)