Chứng minh rằng \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{400}}< 38\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ BĐT luôn đúng \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)(1)
Tương tự, ta có \(b^2+1\ge2b\)(2)
Từ (1) và (2) \(\Rightarrow a^2+b^2+b^2+1\ge2ab+2b\)\(\Leftrightarrow a^2+2b^2+3\ge2ab+2b+2\)
\(\Leftrightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)\(\Leftrightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}\)(3)
Tương tự, ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1}\)(4) và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ca+a+1}\)(5)
Từ (3), (4) và (5) \(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
- Hết phần 1-
Em tên là Thanh phương hôm nay em sẽ giới thiệu về truyền thống tốt đẹp của dân tộc em.
Gia đình em có một truyền thống đó là truyền hiếu thảo ,sống nhân ái ,yêu nước và yêu hòa bình ,phải học giỏi và vâng lời cha mẹ.
Phải biết trân trọng và phát huy truyền thống của gia đình. Sau khi hiểu được những điều này em cần phải phát huy truyền thống của gia đình nhiều hơn.
\(\frac{1}{\sqrt{2}}\)+ \(\frac{1}{\sqrt{3}}\)+ \(\frac{1}{\sqrt{4}}\)+ ......... + \(\frac{1}{\sqrt{400}}\)\(< 38\)
Ta chứng minh \(\frac{1}{k}\)\(< \frac{2}{\sqrt{k}\sqrt{k-1}}\)với mọi với mọi \(k\text{∈}N\cdot,k>2\)
Gỉa sử
\(\frac{1}{k}< \frac{2}{\sqrt{k}\sqrt{k-1}}\)\(k\text{∈}N\cdot,k>2\)
\(=\sqrt{k}+\sqrt{k-1}< 2\sqrt{k}=\sqrt{k-1}< \sqrt{k}< k-1< k\)
Khi đó ta có :
\(\frac{1}{\sqrt{k}}\)\(< \frac{2}{\sqrt{k}\sqrt{k-1}}\)\(< \frac{2\left(\sqrt{k}\sqrt{k-1}\right)}{k-\left(k-1\right)}\)\(=2\left(\sqrt{k}\sqrt{k-1}\right)\)
\(VT\left(\cdot\right)< 2\left(\sqrt{2}+\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{400}-\sqrt{399}\right)\)
\(VT\left(\cdot\right)< 2\left(\sqrt{400}-1\right)=2.\left(20-1\right)=38\left(dpcm\right)\)
tu di ma lam lop 9 r