\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+...+\(\dfrac{2}{x\left(x+2\right)}\)=\(\dfrac{2}{9}\)
Giúp mình với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$10A=\frac{10^{13}+10}{10^{13}+1}=1+\frac{9}{10^{13}+1}> 1+\frac{9}{10^{14}+1}=\frac{10^{14}+10}{10^{14}+1}=10B$
$\Rightarrow A> B$
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc đề của bạn dễ hiểu hơn nhé.
$P = (1 + \frac{1}{2}) + (1 + \frac{1}{2^2}) + ... + (1 + \frac{1}{2^{200}}) < 2 + 2 + ... + 2 = 200 \times 2 = 400$
Information technology has been creating huge changes for Vietnamese society in all fields. Thanks to the internet and smart devices, people can access information quickly and easily, thereby improving their knowledge and understanding of the world. Information technology also promotes economic development, especially e-commerce and online payment. Shopping and payment are more convenient and faster than ever. In the field of education, information technology helps improve the quality of teaching and learning. Students can take online courses and use educational software to study more effectively. Information technology also helps connect people with each other more easily. Social networks and free messaging applications help people contact, chat and share information with each other anytime, anywhere.
\(A=\dfrac{7}{9}+\dfrac{7}{72}+\dfrac{7}{184}+\dfrac{7}{345}\)
\(A=\dfrac{2.7}{18}+\dfrac{2.7}{144}+\dfrac{2.7}{368}+\dfrac{2.7}{690}\)
\(A=2.\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+\dfrac{7}{16.23}+\dfrac{7}{23.30}\right)\)
\(A=2.\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{30}\right)\)
\(A=2.\left(\dfrac{1}{2}-\dfrac{1}{30}\right)\)
\(A=2.\left(\dfrac{15}{30}-\dfrac{1}{30}\right)\)
\(A=\dfrac{14}{15}\)
Gọi \(ƯCLN\left(2n+3;4n+8\right)=d\) \((d\in \mathbb{N^*})\)
Khi đó: \(\left\{{}\begin{matrix}2n+3 ⋮ d\\4n+8 ⋮ d\end{matrix}\right. \Rightarrow\left\{{}\begin{matrix}2\left(2n+3\right) ⋮ d\\4n+8 ⋮ d\end{matrix}\right. \Rightarrow\left\{{}\begin{matrix}4n+6 ⋮ d\\4n+8 ⋮ d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right) ⋮ d\)
\(\Rightarrow4n+8-4n-6⋮d\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2;-1;-2\right\}\)
Mà \(d\in\mathbb{N^*}\Rightarrow d\in\{1;2\}\) (1)
Lại có: \(\begin{cases} 2n+3 \text{ lẻ với mọi } n\\ 2n+3\vdots d \end{cases}\Rightarrow d \text{ lẻ }\)(2)
Từ (1) và (2) \(\Rightarrow d=1\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi số tự nhiên n
Gọi \(d=ƯC\left(2n+3;4n+8\right)\) với d nguyên dương
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-2.\left(2n+3\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\) (1)
Lại có \(2n+3⋮d\) mà \(2n+3\) luôn lẻ
\(\Rightarrow d\) lẻ (2)
Từ (1),(2) \(\Rightarrow d=1\)
\(\Rightarrow2n+3\) và \(4n+8\) nguyên tố cùng nhau với mọi n tự nhiên
\(\Rightarrow\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi số tư nhiên n
Lời giải:
Sửa đề: $x(x+1)$ thay vì $x(x+2)$.
$\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x(x+1)}=\frac{2}{9}$
$\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+....+\frac{2}{x(x+1)}=\frac{2}{9}$
$2\left[\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x(x+1)}\right]=\frac{2}{9}$
$\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+...+\frac{(x+1)-x}{x(x+1)}=\frac{1}{9}$
$\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}$
$\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}$
$\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}$
$\Rightarrow x+1=18$
$\Rightarrow x=17$
11h kém 15ph=10h 45ph
10h 45ph-9h 25ph=1h20ph