K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

D. Thái Lan nhé

HT

29 tháng 12 2021

D Thái Lan nha cj

28 tháng 12 2021

Đ/A: D

28 tháng 12 2021

D. Khu vực mĩ la- tinh       nhé

HT

28 tháng 12 2021

D nhoa

5 tháng 1 2022

D nhá cj iu em quen cj chứ ko phải là ko quen nên cj k cho em nhé

28 tháng 12 2021

A mĩ nha bạn

học tốt

5 tháng 1 2022

A mĩ nha cj

5 tháng 1 2022

C nha cj

28 tháng 12 2021

C nha bạn

HT

Cho nửa đường tròn đường kính AB, C là một điểm bất kì thuộc nửa đường tròn (C khác A, B). Tia phân giác của góc ABC cắt (O) tại D, BD cắt AC tại K, BC cắt AD tại E.a) Chứng minh: 4 điểm E, D, K, C cùng thuộc một đường tròn và AB vuông góc AKb) Tiếp tuyến tại A của (O) cắt BD tại F. Tứ giác AKEF là hình gì? Tại sao?c) Chứng minh: Khi C di chuyển trên đường tròn (O) thì điểm E luôn di chuyển...
Đọc tiếp

Cho nửa đường tròn đường kính AB, C là một điểm bất kì thuộc nửa đường tròn (C khác A, B). Tia phân giác của góc ABC cắt (O) tại D, BD cắt AC tại K, BC cắt AD tại E.

a) Chứng minh: 4 điểm E, D, K, C cùng thuộc một đường tròn và AB vuông góc AK

b) Tiếp tuyến tại A của (O) cắt BD tại F. Tứ giác AKEF là hình gì? Tại sao?

c) Chứng minh: Khi C di chuyển trên đường tròn (O) thì điểm E luôn di chuyển trên một đường tròn cố định và EF là tiếp tuyến của đường tròn đó

d) Cho sin BAC = 1/2. Chứng minh: AK=2CK

Cho nửa đường tròn đường kính AB, C là một điểm bất kì thuộc nửa đường tròn (C khác A, B). Tia phân giác của góc ABC cắt (O) tại D, BD cắt AC tại K, BC cắt AD tại E.

a) Chứng minh: 4 điểm E, D, K, C cùng thuộc một đường tròn và AB vuông góc AK

b) Tiếp tuyến tại A của (O) cắt BD tại F. Tứ giác AKEF là hình gì? Tại sao?

c) Chứng minh: Khi C di chuyển trên đường tròn (O) thì điểm E luôn di chuyển trên một đường tròn cố định và EF là tiếp tuyến của đường tròn đó

d) Cho sin BAC = 1/2. Chứng minh: AK=2CK

0
28 tháng 12 2021

trên nửa mặt phẳng bờ AM chứa điểm C vẽ tam giác đều AMN => MA=MN (1)

Vẽ ra ngoài tam giác ABC tam giác đều ACP

Bạn tự đi chứng minh tam giác AMC = tam giác ANP

=> MC=NP (2)

Từ (1) và (2) => MA+MB+MC=BM+MN+NP ≥≥BP (theo tính chất đường gấp khúc)

Dấu = xảy ra ⇔⇔B,M,N,P thẳng hàng

⇔⇔Góc AMB = Góc ANP =120 độ (vì AMN=ANM=60 độ)

⇔⇔AMB=AMC=120 (vì 2 tam giác chứng minh trên bằng nhau nên 2 góc AMC và ANP bằng nhau)

28 tháng 12 2021

Trả lời

Em học lớp 9 lộn ngược ;-;

Chúc anh học tốt ạ

31 tháng 12 2021

Answer:

\(\frac{\sqrt{18}-\sqrt{12}}{\sqrt{6}-2}+\frac{4}{\sqrt{3}+1}+\sqrt{\left(3\sqrt{3}-12\right)^2}\)

\(=\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\left|3\sqrt{3}-12\right|\)

\(=\frac{\sqrt{6}}{\sqrt{2}}+\frac{4\left(\sqrt{3}-1\right)}{3-1}+12-3\sqrt{3}\)

\(=\sqrt{3}+2\left(\sqrt{3}-1\right)+12-3\sqrt{3}\)

\(=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}\)

\(=10\)

28 tháng 12 2021

Để hàm số (1) đồng biến trên \(ℝ\)thì \(m^2-9>0\)\(\Leftrightarrow m^2>9\)\(\Leftrightarrow\orbr{\begin{cases}m>3\\m< -3\end{cases}}\)

Để hàm số (1) nghịch biến trên \(ℝ\)thì \(m^2-9< 0\)\(\Leftrightarrow m^2< 9\)\(\Leftrightarrow-3< m< 3\)