K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

câu1: theo công thức ta có:

AH^2=HB*HC

        =25*64=1600

=>AH=40

=>tanB=AH/BH=40/25

                        =8/5

=>gócB=58 độ

=>gócC=90-58=32 độ

24 tháng 8 2021

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm, ˆD=75∘

Kẻ AH⊥CD,BK⊥CD

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Suy ra: 

DH=(CD–HK) / 2=(18–12 ) /2=3(cm)

Trong tam giác vuông ADH, ta có:

AH=DH.tgD=3.tg75∘≈11,196(cm)

Vậy:

SABCD=[ (AB+CD) / 2 ] *AH  ≈ [ (12+18) / 2 ] *11,196=167,94

24 tháng 8 2021

b, ĐK : x > 0; x khác 4

\(\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right)\cdot\frac{\sqrt{x}+2}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\cdot\frac{\sqrt{x}+2}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x+2}\right)\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{2}{\sqrt{x}-2}\)

Đặt \(t=\sqrt{\left(x^2+3\right)}\)

\(\Rightarrow t^2=x^2+3\)

\(\Rightarrow\)Phương trình trở thành 

\(7t^2-\left(11x-1\right)t-5\left(x+3\right)=0\)

Delta = \(\left(11x-1\right)+4.7.5\left(x+3\right)>0\forall x\)

'-' Đến đây bạn tìm nghiệm t theo ẩn x sau đó thay \(t=\sqrt{\left(x^2+3\right)}\)để tìm ra đáp án nhé !

24 tháng 8 2021

Đk x>=0   

A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)=\(\frac{2\sqrt{x}+6-6}{\sqrt{x}+3}\)=\(\frac{2\left(\sqrt{x}+3\right)-6}{\sqrt{x}+3}\)=\(2-\frac{6}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{6}{\sqrt{x}+3}\)nguyên 

=> 6\(⋮\)\(\sqrt{x}+3\)=>\(\sqrt{x}+3\in\left\{1;2;3;6\right\}\)=>\(\sqrt{x}\in\left\{0;3\right\}\)vì \(\sqrt{x}\ge0\)

vậy x\(\in\left\{0;9\right\}\)

24 tháng 8 2021

\(ĐK:x\ge0\)

\(A=\frac{2\sqrt{x}}{\sqrt{x}+3}=\frac{2\sqrt{x}+6-6}{\sqrt{x}+3}=\frac{2\left(\sqrt{x}+3\right)-6}{\sqrt{x}+3}=2-\frac{6}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{6}{\sqrt{x}+3}\inℤ\Leftrightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

lập bảng xét nốt nhé:)

DD
25 tháng 8 2021

\(\hept{\begin{cases}2x^2+3xy-3y^2=-1\\4x^2-xy=18\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}36x^2+54xy-54y^2=-18\\4x^2-xy=18\end{cases}}\)

\(\Rightarrow40x^2+53xy-54y^2=0\)

\(\Leftrightarrow\left(40x-27y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}40x=27y\\x=2y\end{cases}}\)

Từ đây bạn rút thế vào một trong hai phương trình ban đầu giải ra nghiệm. 

a, \(M=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\left(ĐK:x\ge0,x\ne1\right)\)

\(=\frac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

\(=\frac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b, Thay x = 25 ta tìm được \(M=\frac{5}{31}\)

c, Xét \(M-\frac{1}{3}=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

Vậy \(M< \frac{1}{3}\)

d, \(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)Bạn giải PT rồi tìm ra x nhé

e, Do \(0< M< 1\)nên \(M^2< M\)

24 tháng 8 2021
a) (√x -5)/(√x +5) b) 3/8 c) x=9; x=625/9 d) x=625
24 tháng 8 2021

a, Với \(x\ge0;x\ne25\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)

\(=\frac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}=\frac{x-10\sqrt{x}+25}{x-25}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)

b, Thay x = 121 => \(\sqrt{x}=11\)ta được : \(\frac{11-5}{11+5}=\frac{6}{16}=\frac{3}{8}\)

c, Ta có : \(A=\left|\frac{\sqrt{x}-5}{\sqrt{x}+5}\right|=\frac{1}{4}\)

TH1 : \(\frac{\sqrt{x}-5}{\sqrt{x}+5}=\frac{1}{4}\Rightarrow4\sqrt{x}-20=\sqrt{x}+5\Leftrightarrow3\sqrt{x}=25\Leftrightarrow\sqrt{x}=\frac{25}{3}\Leftrightarrow x=\frac{625}{9}\)

TH2 : \(\frac{\sqrt{x}-5}{\sqrt{x}+5}=-\frac{1}{4}\Rightarrow4\sqrt{x}-20=-\sqrt{x}-5\Leftrightarrow5\sqrt{x}=15\Leftrightarrow x=9\)

24 tháng 8 2021

1/ Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :

\(A\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{3}{3}=1\)

Dấu "=" xảy ra <=> a=b=c=1