Bài 14: Cho hình thang ABCD (AB//CD)
a/ Biết A: B:C = 6:5:4 Tính các góc A, B,C, D
b/Cho AD + BC = AB. Phân giác góc C và D cắt nhau tại E. Chứng minh: A,E,B thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABMC có
I là trung điểm chung của BC và AM
=>ABMC là hình bình hành
Hình bình hành ABMC có \(\widehat{BAC}=90^0\)
nên ABMC là hình chữ nhật
b: Sửa đề: Gọi H là trung điểm của AC
ΔABC vuông tại A
mà AI là đường trung tuyến
nên IA=IC
Xét tứ giác AICK có
H là trung điểm chung của AC và IK
=>AICK là hình bình hành
Hình bình hành AICK có IA=IC
nên AICK là hình thoi
GT | \(\Delta ABC,AB=AC,M\) là trung điểm AC M là trung điểm HN |
KL | a) AHCN là hình chữ nhật b) AB // HN |
a) Do \(AH\) là đường cao của \(\Delta ABC\left(gt\right)\)
\(\Rightarrow AH\perp BC\)
\(\Rightarrow\widehat{AHC}=90^0\)
Tứ giác AHCN có:
M là trung điểm của AC (gt)
M là trung điểm của HN (gt)
\(\Rightarrow AHCN\) là hình bình hành
Mà \(\widehat{AHC}=90^0\left(cmt\right)\)
\(\Rightarrow AHCN\) là hình chữ nhật
b) Do AHCN là hình chữ nhật (cmt)
\(\Rightarrow AN=HC\) và \(AN\) // \(HC\)
\(\Delta ABC\) cân tại A có AH là đường cao (gt)
\(\Rightarrow AH\) cũng là đường trung trực của \(\Delta ABC\)
\(\Rightarrow H\) là trung điểm của BC
\(\Rightarrow BH=HC\)
Mà \(AN=HC\left(cmt\right)\)
\(\Rightarrow AN=BH\)
Do \(AN\) // \(HC\left(cmt\right)\)
\(\Rightarrow AN\) // \(BH\)
Tứ giác ABHN có:
\(AN\) // \(BH\left(cmt\right)\)
\(AN=BH\left(cmt\right)\)
\(\Rightarrow ABHN\) là hình bình hành
\(\Rightarrow AB\) // \(HN\)
a: Xét ΔHDC có
N,M lần lượt là trung điểm của HD,HC
=>NM là đường trung bình của ΔHDC
=>NM//DC và \(MN=\dfrac{DC}{2}\)
Ta có: NM//DC
DC\(\perp\)AD
Do đó: NM\(\perp\)DA
b: \(MN=\dfrac{DC}{2}\)
mà \(AB=\dfrac{DC}{2}\)
nên MN=AB
ta có: MN//CD
CD//AB
Do đó: MN//AB
Xét tứ giác ABMN có
AB//MN
AB=MN
Do đó: ABMN là hình bình hành
a: Ta có: ED\(\perp\)HF
GK\(\perp\)HF
Do đó: ED//GK
Xét ΔEDH vuông tại D và ΔGKF vuông tại K có
EH=GF
\(\widehat{EHD}=\widehat{GFK}\)(hai góc so le trong, EH//FG)
Do đó: ΔEDH=ΔGKF
=>ED=GK
Xét tứ giác EDGK có
ED//GK
ED=GK
Do đó: EDGK là hình bình hành
b: Ta có: EDGK là hình bình hành
=>EG cắt DK tại trung điểm của mỗi đường
mà O là trung điểm của DK
nên O là trung điểm của EG
Xét tứ giác EMGN có
EM//GN
EN//GM
Do đó: EMGN là hình bình hành
=>EG cắt MN tại trung điểm của mỗi đường(1)
mà O là trung điểm của EG
nên O là trung điểm của MN
c: Ta có: EHGF là hình bình hành
=>EG cắt HF tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra EG,MN,HF đồng quy
\(8xy^3-x\cdot\left(x-y\right)^3\)
\(=x\left[8y^3-\left(x-y\right)^3\right]\)
\(=x\cdot\left[\left(2y\right)^3-\left(x-y\right)^3\right]\)
\(=x\left(2y-x+y\right)\left[\left(2y\right)^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=x\left(-x+3y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)
\(=x\left(-x+3y\right)\left(5x^2-y^2\right)\)
\(12x^3-6x^2y+3x^2y^2\)
\(=3x^2\cdot4x-3x^2\cdot2y+3x^2\cdot y^2\)
\(=3x^2\left(4x-2y+y^2\right)\)
a: AB//CD
=>\(\widehat{B}+\widehat{C}=180^0\)
mà \(\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}\)
nên \(\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{5+4}=\dfrac{180^0}{9}=20^0\)
=>\(\widehat{B}=5\cdot20^0=100^0;\widehat{C}=4\cdot20^0=80^0\)
Ta có: \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{5}\)
=>\(\dfrac{\widehat{A}}{6}=\dfrac{100^0}{5}=20^0\)
=>\(\widehat{A}=20^0\cdot6=120^0\)
AB//CD
=>\(\widehat{A}+\widehat{D}=180^0\)
=>\(\widehat{D}=180^0-120^0=60^0\)
b: Ta có: \(\widehat{CDE}=\widehat{ADE}\)(DE là phân giác của góc ADC)
\(\widehat{CDE}=\widehat{AED}\)(hai góc so le trong, DC//AE)
Do đó: \(\widehat{ADE}=\widehat{AED}\)
=>AD=AE
Ta có: \(\widehat{BEC}=\widehat{DCE}\)(hai góc so le trong, DC//BE)
mà \(\widehat{DCE}=\widehat{BCE}\)(CE là phân giác của góc DCB)
nên \(\widehat{BCE}=\widehat{BEC}\)
=>BE=BC
Ta có: AD+BC=AB
mà AD=AE và BE=BC
nên AE+BE=AB
=>E,A,B thẳng hàng