K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

trả lời nhanh hộ mình vs

28 tháng 8 2021

đáp án nè

Đọc tiếp...

28 tháng 8 2021

a, \(\frac{\left(\sqrt{12}+2\sqrt{27}\right)\sqrt{3}}{2}-\sqrt{150}\)

\(=\frac{\left(2\sqrt{3}+6\sqrt{3}\right)\sqrt{3}}{2}-5\sqrt{6}=\frac{24}{2}-5\sqrt{6}=12-5\sqrt{6}\)

b, \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}=7-2\sqrt{21}+2\sqrt{21}=7\)

c, \(\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)=\left(1+\sqrt{2}\right)^2-3\)

\(=3+2\sqrt{2}-3=2\sqrt{2}\)

d, \(\sqrt{3}\left(\sqrt{2}-\sqrt{3}\right)^2-\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left[\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)-1\right]\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(3-\sqrt{6}-1\right)=\left(\sqrt{3}-\sqrt{2}\right)\left(2-\sqrt{6}\right)\)

\(=-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)^2=-\sqrt{2}\left(5-2\sqrt{6}\right)=-5\sqrt{2}+4\sqrt{3}\)

28 tháng 8 2021

Ta có : \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Theo định lí Pytago tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow\left(\frac{3}{4}AC\right)^2+AC^2=225\Rightarrow AC=12\)cm 

\(\Rightarrow AB=\frac{3}{4}AC=\frac{3}{4}.12=9\)cm

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thúc : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{81}{15}=\frac{27}{5}\)cm 

\(\Rightarrow CH=BC-BH=15-\frac{27}{5}=\frac{48}{5}\)cm 

Xét tam giác ABC vuông tại A, AH vuông góc BC tại H có: AB²=BH.BC (hệ thức lượng trong tgv) thay AB=3;BC=5,ta có 3²=BH.5 => BH=9:5=1,8(cm) => CH=BC-BH=5-1,8=3,2(cm) Vậy BH=1,8cm; CH=3,2cm
28 tháng 8 2021

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{16}{5}\)cm 

28 tháng 8 2021

Dựng các đường kính MH,KN như hình :  A B D c O N Q M P K N H

Tứ giác ABNK có 4 góc vuông nên :

\(\Rightarrow\)Tứ giác ABNK là hình chữ nhật 

Ta có : 

\(\hept{\begin{cases}ON=OK\\AM=MB\end{cases}}\)

\(\Rightarrow\)MO là đường trung bình 

\(\Rightarrow MO=\frac{BN+AK}{2}=\frac{\frac{1}{2}AB+\frac{1}{2}AD}{2}=\frac{\frac{1}{2}BC}{2}\)

\(=\frac{BC}{2}=\frac{\sqrt{2}}{2}\)

Ta có : 

\(OM\perp AB,OH\perp CD,OK\perp AD,ON\perp BC\)

\(\Rightarrow\)MNHK \(\in\left(O\right)\)nội tiếp hình vuông 

\(\Rightarrow OM=OH=OK=ON=\frac{\sqrt{2}}{2}\)

28 tháng 8 2021

Xét ta giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức :

 \(AB^2=BH.BC=BH.\left(CH+BH\right)\Rightarrow25=BH\left(\frac{144}{13}+BH\right)\Rightarrow BH=\frac{25}{13}\)cm 

\(\Rightarrow BC=HB+HC=\frac{144}{13}+\frac{25}{13}=\frac{196}{13}\)

* Áp dụng hệ thức : \(AC^2=HC.BC=\frac{144}{13}.\frac{169}{13}=144\Rightarrow AC=12\)cm