giúp mk vs mọi ng ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+y2+z2=3xyz⇒xyz+yxz+zxy=3�2+�2+�2=3���⇒���+���+���=3
Áp dụng bất đẳng thức Cô-si cho hai số dương xyz;yxz���;��� ta có: xyz+yxz≥2√xyz.yx=2z���+���≥2���.��=2�
Tương tự ta cũng có: yxz+zxy≥2x;zxy+xyz≥2y���+���≥2�; ���+���≥2�
⇒(xyz+yxz)+(yxz+zxy)+(zxy+xyz)≥2z+2x+2y⇒xyz+yzx+zxy≥1x+1y+1z⇒1x+1y+1z≤3⇒���+���+���+���+���+���≥2�+2�+2�⇒���+���+���≥1�+1�+1�⇒1�+1�+1�≤3
Lại có: x4+yz≥2√x4yz=2x2√yz⇒x2x4+yz≤12√yz=14.2.1√y.1√z≤14(1y+1z)�4+��≥2�4��=2�2��⇒�2�4+��≤12��=14.2.1�.1�≤14(1�+1�)
Tương tự y2y4+xz≤14(1x+1z);z2z4+xy≤14(1x+1y)�2�4+��≤14(1�+1�);�2�4+��≤14(1�+1�)
Suy ra
P=x2x4+yz+y2y4+xz+z2z4+xy≤14(2x+2y+2z)=12(1x+1y+1z)≤32=>P≤32�=�2�4+��+�2�4+��+�2�4+��≤14(2�+2�+2�)=12(1�+1�+1�)≤32=>�≤32
Vậy giá trị nhỏ nhất của P = 3232 khi x = y = z = 1.
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
=>\(2A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\)
=>\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-\dfrac{1}{16}-\dfrac{1}{32}-\dfrac{1}{64}\)
=>\(A=1-\dfrac{1}{64}=\dfrac{63}{64}\)
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}\)
\(=\dfrac{63}{64}\)
Giá ban đầu của 4 quyển sách là:
30600:(1-15%)=30600:0,85=36000(đồng)
=>Giá của 1 quyển sách là 36000:4=9000(đồng)
a: \(A\left(x\right)=-5x^3+3x^4-2x^4-4x^7+4x^7+2x-7\)
\(=\left(3x^4-2x^4\right)-5x^3+2x-7\)
\(=x^4-5x^3+2x-7\)
Bậc là 4
Hệ số cao nhất là 1
Hệ số tự do là -7
b: \(A\left(x\right)-M\left(x\right)=3x^4-5x^2+1\)
=>\(M\left(x\right)=A\left(x\right)-\left(3x^4-5x^2+1\right)\)
\(=x^4-5x^3+2x-7-3x^4+5x^2-1\)
\(=-2x^4-5x^3+5x^2+2x-8\)
c: \(N\left(x\right)=\dfrac{A\left(x\right)}{x^2-3x+1}=\dfrac{x^4-5x^3+2x-7}{x^2-3x+1}\)
\(=\dfrac{x^4-3x^3+x^2-2x^3+6x^2-2x-7x^2+21x-7-17x}{x^2-3x+1}\)
\(=x^2-2x-7-\dfrac{17x}{x^2-3x+1}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
=>\(x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\)
=>\(2\cdot\left(3k\right)^2+2\cdot\left(4k\right)^2-3\cdot\left(5k\right)^2=-100\)
=>\(18k^2+32k^2-75k^2=-100\)
=>\(-25k^2=-100\)
=>\(k^2=4\)
=>\(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
TH1: k=2
=>\(x=3\cdot2=6;y=4\cdot2=8;z=5\cdot2=10\)
TH2: k=-2
=>\(x=3\cdot\left(-2\right)=-6;y=4\cdot\left(-2\right)=-8;z=5\cdot\left(-2\right)=-10\)
\(\dfrac{x}{4}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\) \(\times\) 4
\(x\) = \(\dfrac{8}{7}\)
Nếu mỗi bạn cùng thêm 15 viên bi thì Toán có nhiều hơn Văn 20 viên bi
=>Lúc đầu Toán cũng có nhiều hơn Văn 20 viên bi
Số viên bi ban đầu của Toán là:
(148+20):2=168:2=84(viên)
Số viên bi ban đầu của Văn là:
84-20=64(viên)
Cách 1
Số bi lúc sau của hai bạn khi được thêm vào 15 viên là:
148 + 15 + 15 = 178 (viên)
Số viên bi lúc sau của Toán là:
(178 + 20) : 2 = 99 ( viên)
Số viên bi lúc sau của Văn là:
(178 - 20 ) : 2 = 79 ( viên)
Số viên bi lúc đầu của Toán là:
99 - 15 = 84 (viên)
Số viên bi lúc đầu của Văn là:
79 - 15 = 64 (viên)
Đ/S : Toán: 84 viên
Văn : 64 viên
Cách 2:
Giải
Tổng số viên bi lúc sau của Toán và Văn là:
148 + 15 + 15 = 178 (viên)
Số viên bi lúc đầu của Toán là:
(178 + 20) : 2 - 15 = 84 (viên)
Số viên bi lúc đầu của Văn là:
(178 - 20) : 2 - 15 = 64 (viên)
Đ/S:Toán : 84 viên
Văn : 64 viên
Ta nhận thấy \(\dfrac{9}{10};\dfrac{9}{11};\dfrac{10}{11}\) khi quy đồng có \(MSC=110\)
Để so sánh \(3\) phân số thì ta quy đồng từng phân số sao cho cả \(3\) phân số đều có \(MSC=110\)
Ta có :
\(110:10=11\)
\(110:11=10\)
Quy đồng:
\(\dfrac{9}{10}=\dfrac{9\times11}{10\times11}=\dfrac{99}{110}\)
\(\dfrac{9}{11}=\dfrac{9\times10}{11\times10}=\dfrac{90}{110}\)
\(\dfrac{10}{11}=\dfrac{10\times10}{11\times10}=\dfrac{100}{110}\)
Sắp xếp các phân số đó theo thứ tự từ bé đến lớn , ta được:
\(=>\dfrac{90}{110}\left(\dfrac{9}{11}\right);\dfrac{99}{110}\left(\dfrac{9}{10}\right);\dfrac{100}{110}\left(\dfrac{10}{11}\right)\)
Vậy khi sắp xếp các phân số theo thứ tự từ bé đến lớn ta được:\(\dfrac{9}{11};\dfrac{9}{10};\dfrac{10}{11}\)
a: Gọi giá niêm yết của 1 cái bút là x(đồng)
(Điều kiện: x>0)
Giá của 1 cây bút trong 30 cây bút đầu tiên là:
\(x\left(1-20\%\right)=0,8x\left(đồng\right)\)
Giá của 1 cây bút từ cây thứ 31 là:
\(0,8x\cdot\left(1-40\%\right)=0,48x\left(đồng\right)\)
Tổng số tiền là 900000 đồng nên ta có:
\(0,8x\cdot30+0,48x\cdot10=900000\)
=>24x+4,8x=900000
=>28,8x=900000
=>x=31250(nhận)
vậy: Giá niêm yết của 1 cây bút là 31250 đồng
b: Số tiền còn lại sau khi mua 40 cây đầu tiên là:
1260000-900000=360000(đồng)
Số cây bút còn lại mua được là:
360000:(0,48*31250)=24(cây)
Tổng số cây bút mua được là:
40+24=64(cây)