cho tam giác ABC=tam giác DEF với BC=6cm;AB=8cm;DF=10cm
a,tính các cạnh còn lại của mỗi tam giác
b,tính chu vicủa 2 tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Theo đề bài,ta có:
\(\dfrac{2x}{3y}=-\dfrac{1}{3}\)
\(\Rightarrow-6x=3y\)
\(\Rightarrow\dfrac{x}{3}=-\dfrac{y}{6}=\dfrac{2x}{6}=-\dfrac{3y}{18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{6}=-\dfrac{3y}{18}=\dfrac{2x+3y}{6+\left(-18\right)}=\dfrac{7}{12}\)
\(\Rightarrow x=\dfrac{7}{12}\cdot3=\dfrac{7}{4}\)
\(y=\dfrac{7}{12}\cdot-6=-\dfrac{7}{2}\)
a) Đề là chứng minh \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\) à bạn?
Ta có: \(\dfrac{a}{c}=\dfrac{c}{b}\)
\(\Rightarrow ab=c^2\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\)
\(\Rightarrowđpcm\)
b)
Ta có: \(\dfrac{a}{c}=\dfrac{c}{d}\)
\(\Rightarrow c^2=ab\)
\(\Rightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b^2-a^2}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)
\(\Rightarrowđpcm.\)
Đa thức f(x) chia cho (x-2) dư 6, chia cho (x²+3)dư 3x+2
Tìm đa thức dư f(x) chia cho (x-2) . (x²+3)
\(A=\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(=-\dfrac{2}{6}=-\dfrac{1}{3}\)
\(2^{-1}+\left(5^2\right)^3\cdot5^{-6}+4^{-3}\cdot32-2\left(-3\right)^2\cdot\dfrac{1}{9}\)
\(=\dfrac{1}{2}+5^6.5^{-6}+4^{-3}.4^2.2--6^2.\dfrac{1}{9}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{4}.2+\dfrac{3^2.2^2}{3^2}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{2}+2^2\)
\(=\dfrac{1}{2}.2+1+4\)
\(=1+5=6\)
a, Xét tam giác MKN và tam giác MKO có
MK chung
MN = MO ( cmt)
\(\widehat{NMK}=\widehat{OMK}\) ( do MK là tia phân giác )
=> tam giác MKN = tam giác MKO (c-g-c)
b, Do tam giác MKN = tam giác MKO (cmt)
=> KN = KO
c, Do MK là trung điểm NO
mà MK cách đều hai điểm N và O
=> MK là đường trung trực
=> MK vuông góc với NO
M N K O
a)
Theo giả thiết: \(\Delta ABC=\Delta DEF\)
\(\Rightarrow\left\{{}\begin{matrix}AB=DE=8cm\\BC=FE=6cm\\AC=DF=10cm\end{matrix}\right.\)
b)
Chu vi của hai tam giác trên:
\(P_{\Delta ABC}=P_{\Delta DEF}=8+6+10=24cm\)