K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \). **Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)** Sử dụng đồng nhất thức cơ bản: \[ \sin^2(x) + \cos^2(x) = 1 \] Và: \[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \] \[ = 1 - 2\sin^2(x)\cos^2(x) \] Sử dụng tiếp...
Đọc tiếp

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \).

**Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)**

Sử dụng đồng nhất thức cơ bản:
\[ \sin^2(x) + \cos^2(x) = 1 \]
Và:
\[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \]
\[ = 1 - 2\sin^2(x)\cos^2(x) \]

Sử dụng tiếp đồng nhất thức:
\[ \sin^2(x)\cos^2(x) = \left(\frac{\sin(2x)}{2}\right)^2 = \frac{\sin^2(2x)}{4} \]

Do đó:
\[ M = 1 - 2\cdot\frac{\sin^2(2x)}{4} = 1 - \frac{\sin^2(2x)}{2} \]

**Bước 2: Tìm giá trị nhỏ nhất và lớn nhất của \( M = 1 - \frac{\sin^2(2x)}{2} \)**

Biểu thức \(\sin^2(2x)\) có giá trị từ 0 đến 1, do đó:
\[ 0 \leq \sin^2(2x) \leq 1 \]

Áp dụng vào biểu thức \( M \):
\[ M = 1 - \frac{\sin^2(2x)}{2} \]
Khi \(\sin^2(2x) = 0\):
\[ M = 1 - 0 = 1 \]

Khi \(\sin^2(2x) = 1\):
\[ M = 1 - \frac{1}{2} = \frac{1}{2} \]

Vậy:
\[ m = \frac{1}{2} \]
\[ M = 1 \]

**Bước 3: Tính giá trị của \( P \)**

\[ P = 2m + M^2 + 2024 \]
\[ P = 2 \cdot \frac{1}{2} + 1^2 + 2024 \]
\[ P = 1 + 1 + 2024 \]
\[ P = 2026 \]

Vậy, giá trị của \( P \) là \( 2026 \). Nếu bạn có thêm bất kỳ câu hỏi nào hoặc cần hỗ trợ thêm, đừng ngần ngại hỏi nhé! 😊

 

0
NV
9 tháng 11 2024

a. 2 đơn vị chín phần trăm là \(2,09\)

b. Năm trăm bốn đơn vị năm phần mười và tám phần trăm là \(504,58\)

c. Không đơn vị bảy phần mười và sáu phần trăm bốn phần nghìn là \(0,764\)

d. Mười sáu đơn vị ba mươi tám phần nghìn là \(16,038\)

NV
9 tháng 11 2024

Nửa chu vi hình chữ nhật là:

\(34:2=17\left(m\right)\)

Chiều rộng hình chữ nhật là:

\(17-12=5\left(cm\right)\)

Áp dụng định lý Pitago:

\(BD=\sqrt{17^2+5^2}=\sqrt{314}\left(cm\right)\)

10 tháng 11 2024

Viết rõ ràng đề ra được không e?

8 tháng 11 2024

qua tác phẩm hay bài thơ gì vậy bạn?

Chiều cao của mặt bên là 5cm

=>Độ dài trung đoạn là 5cm

Chu vi đáy là \(6\cdot4=24\left(cm\right)\)

Diện tích xung quanh là: \(\dfrac{1}{2}\cdot24\cdot5=12\cdot5=60\left(cm^2\right)\)

Diện tích đáy là \(6^2=36\left(cm^2\right)\)

Thể tích là \(V=\dfrac{1}{3}\cdot36\cdot4=4\cdot12=48\left(cm^3\right)\)