\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}+4}{4-x}\)
rút gọn biểu thức. Mình cần gấp lắm rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.
\(y+3=0\)
\(y=-3\)
Để PT vô nghiệm \(\left(m-1\right)x+2=-3\)
\(\left(m-1\right)x=-5\)
Để PT vô nghiệm thì : \(m-1=0\)
\(\Rightarrow m=1\)
ĐKXĐ : x \(\ge0;x\ne1\)
Khi đó B = \(\frac{2\left(\sqrt{x}-1\right)}{x-1}+\frac{4\left(\sqrt{x}+1\right)}{x-1}-\frac{7\sqrt{x}}{x-1}=\frac{2-\sqrt{x}}{x-1}\)
Khi đó \(M=A.B=\left(x-3\sqrt{x}+2\right).\frac{2-\sqrt{x}}{x-1}=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right).\frac{2-\sqrt{x}}{x-1}\)
\(=\frac{-\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)
Để \(M\ge0\Leftrightarrow\frac{-\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\ge0\Leftrightarrow-\left(\sqrt{x}-2\right)^2\ge0\)(Vì \(\sqrt{x}+1\ge1>0\))
\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow x=4\)
Flo đc tăng sức mạnh còn bạn thì tăng vé Báo Cáo VIP nha!
@congtybaocao
\(\Delta'=\left(m+1\right)^2-\left(-2m-3\right)=m^2+2m+1+2m+3\)
\(=m^2+4m+4=\left(m+2\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1;x2
đk : x >= 0, x khác 4
\(=\dfrac{x+2\sqrt{x}-\left(x-\sqrt{x}-2\right)-\sqrt{x}-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-2}{x-4}=\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)