K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

\(\widehat{BFE}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{ABE}=\widehat{BFE}\)

Xét ΔABE và ΔAFB có

\(\widehat{ABE}=\widehat{AFB}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE~ΔAFB

=>\(\dfrac{AB}{AF}=\dfrac{AE}{AB}\)

=>\(AB^2=AF\cdot AE\)

c: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại X

ΔOEF cân tại O

mà OD là đường trung tuyến

nên OD\(\perp\)FE tại D

Xét ΔAXK vuông tại X và ΔADO vuông tại D có

\(\widehat{XAK}\) chung

Do đó: ΔAXK~ΔADO

=>\(\dfrac{AX}{AD}=\dfrac{AK}{AO}\)

=>\(AX\cdot AO=AD\cdot AK\)

Xét ΔABO vuông tại B có BX là đường cao

nên \(AX\cdot AO=AB^2\)

=>\(AE\cdot AF=AK\cdot AD\)

Ta có: \(\widehat{ADO}=\widehat{ABO}=\widehat{ACO}=90^0\)

=>A,D,B,C,O cùng thuộc đường tròn đường kính AO

Gọi độ dài quãng đường AB là x(km)

(Điều kiện: x>0)

Thời gian ô tô đi từ A đến B là \(\dfrac{x}{50}\left(giờ\right)\)

Thời gian ô tô đi từ B về A là \(\dfrac{x}{60}\left(giờ\right)\)

Tổng thời gian đi và về là:

4h-20p=3h40p=11/3(giờ)

Do đó, ta có phương trình:

\(\dfrac{x}{50}+\dfrac{x}{60}=\dfrac{11}{3}\)

=>\(\dfrac{11x}{300}=\dfrac{11}{3}\)

=>\(\dfrac{x}{300}=\dfrac{1}{3}\)

=>x=100(nhận)

vậy: Độ dài quãng đường AB là 100km

AH
Akai Haruma
Giáo viên
22 tháng 5 2024

Lời giải:

Giả sử đội 1 và đội 2 làm riêng trong lần lượt $a$ và $b$ giờ thì hoàn thành công việc.

Trong 1 giờ: đội 1 làm được $\frac{1}{a}$ công việc, đội 2 làm được $\frac{1}{b}$ công việc.

Theo bài ra ta có:

\(\left\{\begin{matrix}\ \frac{6}{a}+\frac{6}{b}=\frac{11}{15}\\ \frac{5}{a}+\frac{6}{b}=\frac{2}{3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{15}\\ \frac{1}{b}=\frac{1}{18}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=15\\ b=18\end{matrix}\right.\)

b: Phương trình hoành độ giao điểm là:

\(x^2=x+2\)

=>\(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Khi x=2 thì \(y=2^2=4\)

Khi x=-1 thì \(y=\left(-1\right)^2=1\)

Vậy: A(-1;1); B(2;4)

C thuộc (P)

=>\(C\left(x;x^2\right)\)

B(2;4); A(-1;1); C(x;x2)

\(\overrightarrow{BA}=\left(-3;-3\right);\overrightarrow{BC}=\left(x-2;x^2-4\right)\)

ΔBAC vuông tại B

=>\(\overrightarrow{BA}\cdot\overrightarrow{BC}=0\)

=>\(-3\left(x-2\right)+\left(-3\right)\left(x^2-4\right)=0\)

=>\(\left(x-2\right)+\left(x^2-4\right)=0\)

=>\(x^2+x-6=0\)

=>(x+3)(x-2)=0

=>\(\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)

Khi x=-3 thì \(y=\left(-3\right)^2=9\)

vậy: C(-3;9); A(-1;1); B(2;4)

\(BA=\sqrt{\left(-1-2\right)^2+\left(1-4\right)^2}=3\sqrt{2}\)

\(BC=\sqrt{\left(-3-2\right)^2+\left(9-4\right)^2}=5\sqrt{2}\)

\(AC=\sqrt{\left(-3+1\right)^2+\left(9-1\right)^2}=2\sqrt{17}\)

Khoảng cách từ B đến AC là:

\(\dfrac{BA\cdot BC}{AC}=\dfrac{3\sqrt{2}\cdot5\sqrt{2}}{2\sqrt{17}}=\dfrac{15}{\sqrt{17}}\)

1: Xét tứ giác BMNC có \(\widehat{BMC}=\widehat{BNC}=90^0\)

nên BMNC là tứ giác nội tiếp

=>B,M,N,C cùng thuộc một đường tròn

2: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{ANM}\left(=180^0-\widehat{MNC}\right)\)

nên \(\widehat{xAC}=\widehat{ANM}\)

=>MN//Ax

mà Ax\(\perp\)AO

nên MN\(\perp\)AO

mà MN\(\perp\)NK

nên NK//AO

22 tháng 5 2024

1: Xét tứ giác BMNC có 𝐵𝑀𝐶^=𝐵𝑁𝐶^=900BMC=BNC=900

nên BMNC là tứ giác nội tiếp

=>B,M,N,C cùng thuộc một đường tròn

2: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

𝑥𝐴𝐶^xAC là góc tạo bởi tiếp tuyến Ax và dây cung AC

𝐴𝐵𝐶^ABC là góc nội tiếp chắn cung AC

Do đó: 𝑥𝐴𝐶^=𝐴𝐵𝐶^xAC=ABC

mà 𝐴𝐵𝐶^=𝐴𝑁𝑀^(=1800−𝑀𝑁𝐶^)ABC=ANM(=1800MNC)

nên 𝑥𝐴𝐶^=𝐴𝑁𝑀^xAC=ANM

=>MN//Ax

mà AxAO

nên MNAO

mà MNNK

nên NK//AO

a: Xét (O) có

\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD

\(\widehat{BED}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{ABD}=\widehat{BED}\)

Xét ΔABD và ΔAEB có

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD~ΔAEB

=>\(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)

=>\(AB^2=AD\cdot AE\)

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại H

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\)

=>\(AH\cdot AO=AD\cdot AE\)

=>\(\dfrac{AH}{AE}=\dfrac{AD}{AO}\)

Xét ΔAHD và ΔAEO có

\(\dfrac{AH}{AE}=\dfrac{AD}{AO}\)

\(\widehat{HAD}\) chung

Do đó: ΔAHD~ΔAEO

=>\(\widehat{AHD}=\widehat{AEO}\)

mà \(\widehat{AHD}+\widehat{OHD}=180^0\)(hai góc kề bù)

nên \(\widehat{OHD}+\widehat{OED}=180^0\)

=>OHDE nội tiếp

a: Xét tứ giác BNMC có \(\widehat{BNC}=\widehat{BMC}=90^0\)

nên BNMC là tứ giác nội tiếp

b: Ta có: BNMC là tứ giác nội tiếp

=>\(\widehat{BCM}+\widehat{BNM}=180^0\)

mà \(\widehat{BNM}+\widehat{INB}=180^0\)(hai góc kề bù)

nên \(\widehat{INB}=\widehat{ICM}\)

Ta có: A,D,B,C cùng thuộc (O)

=>ADBC là tứ giác nội tiếp

=>\(\widehat{ADB}+\widehat{ACB}=180^0\)

mà \(\widehat{ADB}+\widehat{IDB}=180^0\)

nên \(\widehat{IDB}=\widehat{ACB}\)

Xét ΔINB và ΔICM có

\(\widehat{INB}=\widehat{ICM}\)

\(\widehat{NIB}\) chung

Do đó: ΔINB~ΔICM

=>\(\dfrac{IN}{IC}=\dfrac{IB}{IM}\)

=>\(IN\cdot IM=IB\cdot IC\left(1\right)\)

Xét ΔIDB và ΔICA có

\(\widehat{IDB}=\widehat{ICA}\)

\(\widehat{DIB}\) chung

Do đó: ΔIDB~ΔICA

=>\(\dfrac{ID}{IC}=\dfrac{IB}{IA}\)

=>\(IB\cdot IC=IA\cdot ID\left(2\right)\)

Từ (1),(2) suy ra \(ID\cdot IA=IN\cdot IM\)

=>\(\dfrac{ID}{IM}=\dfrac{IN}{IA}\)

Xét ΔIDN và ΔIMA có

\(\dfrac{ID}{IM}=\dfrac{IN}{IA}\)

\(\widehat{DIN}\) chung

Do đó: ΔIDN~ΔIMA

\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{x-4}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}+2+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(P=A\cdot B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{x-2\sqrt{x}}{\sqrt{x}+2}\)

\(=\dfrac{x}{\sqrt{x}+2}\)

P<1

=>P-1<0

=>\(\dfrac{x-\sqrt{x}-2}{\sqrt{x}+2}< 0\)

=>\(x-\sqrt{x}-2< 0\)

=>\(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

b: \(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)

\(=4m^2-4m+8=\left(2m-1\right)^2+7>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=m-2\end{matrix}\right.\)

Đặt \(A=\dfrac{4m^2-8m+7}{6x_1x_2-x_1^2-x_2^2+11}\)

\(=\dfrac{4m^2-8m+7}{6x_1x_2-\left(x_1^2+x_2^2\right)+11}\)

\(=\dfrac{4m^2-8m+7}{6x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+11}\)

\(=\dfrac{4m^2-8m+7}{-\left(x_1+x_2\right)^2+8x_1x_2+11}\)

\(=\dfrac{4m^2-8m+7}{-\left(2m\right)^2+8\left(m-2\right)+11}\)

\(=\dfrac{4m^2-8m+7}{-4m^2+8m-16+11}\)

\(=\dfrac{4m^2-8m+7}{-4m^2+8m-5}\)

\(=-\dfrac{4m^2-8m+7}{4m^2-8m+5}\)

\(=-\dfrac{4m^2-8m+5+2}{4m^2-8m+5}\)

\(=-1-\dfrac{2}{4m^2-8m+5}\)

\(=-1-\dfrac{2}{4m^2-8m+4+1}\)

\(=-1-\dfrac{2}{\left(2m-2\right)^2+1}\)

\(\left(2m-2\right)^2+1>=1\forall m\)

=>\(\dfrac{2}{\left(2m-2\right)^2+1}< =\dfrac{2}{1}=2\forall m\)

=>\(-\dfrac{2}{\left(2m-2\right)^2+1}>=-2\forall m\)

=>\(A=-\dfrac{2}{\left(2m-2\right)^2+1}-1>=-3\forall m\)

Dấu '=' xảy ra khi 2m-2=0

=>m=1

a: \(1+2\sqrt{x}+x=\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot1+1^2=\left(\sqrt{x}+1\right)^2\)

b: \(a+2\sqrt{a}+1=\left(\sqrt{a}\right)^2+2\cdot\sqrt{a}\cdot1+1^2=\left(\sqrt{a}+1\right)^2\)

d: \(x-2\sqrt{xy}+y=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\sqrt{y}+\left(\sqrt{y}\right)^2\)

\(=\left(\sqrt{x}-\sqrt{y}\right)^2\)

e: \(x^2-1=x^2-1^2=\left(x-1\right)\left(x+1\right)\)

f: \(9x^2-1=\left(3x\right)^2-1^2=\left(3x-1\right)\left(3x+1\right)\)

g: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

h: \(1-x\sqrt{x}=1^3-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

i: \(x\sqrt{x}+1=\left(\sqrt{x}\right)^3+1^3=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

j: \(a\sqrt{a}-1=\left(\sqrt{a}\right)^3-1^3=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)

k: \(x\sqrt{x}-8=\left(\sqrt{x}\right)^3-2^3=\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)\)

l: \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)