Tìm tất cả các số tự nhiên khi chia cho 5 ta được thương = số dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2=25\\ \Rightarrow x^2=5^2\\ \Rightarrow x=5\)
\(b,6\cdot x^2=150\\ \Rightarrow x^2=150:6\\ \Rightarrow x^2=25\\ \Rightarrow x^2=5^2\\ \Rightarrow x=5\)
11) Ta có:
`9^5=(3^2)^5=3^10`
`27^3=(3^3)^3=3^9`
Vì: `9<10=>3^9<3^10`
`=>9^5>27^3`
12) Ta có:
`3^500=(3^5)^100=243^100`
`7^300=(7^3)^100=343^100`
Vì: `243<343=>243^100<343^100`
`=>3^500<7^300`
13) Ta có:
`8^5=(2^3)^5=2^15=2*2^14`
`3*4^7=3*(2^2)^7=3*2^14`
Vì: `2<3=>2*2^14<3*2^14`
`=>8^5<3*4^7`
a; A = \(\dfrac{n+1}{n}\)
ƯCLN(n + 1; n) = d
⇒ \(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
⇒ n + 1 - n ⋮ d
⇒ (n - n) + 1 ⋮ d
⇒ 1 ⋮ d
Vậy d = 1
Hay A = \(\dfrac{n+1}{n}\) là phân số tối giản với mọi n khác 0
b; B = \(\dfrac{n-1}{n-2}\) (n \(\in\) Z; n ≠ 2)
Gọi ƯCLN (n - 1; n - 2) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}n-1⋮d\\n-2⋮d\end{matrix}\right.\)
⇒ (n - 1 - n + 2) ⋮ d
⇒ (n - n) + (2 - 1)⋮ d
1 ⋮ d
B = \(\dfrac{n-1}{n+2}\) là phân số tối giản với mọi 2 ≠ n \(\in\) Z
\(a,2^n+2^{n+4}=272\\ \Rightarrow2^n+2^n.2^4=272\\ \Rightarrow2^n+2^n.16=272\\ \Rightarrow2^n.17=272\\ \Rightarrow2^n=16\\ \Rightarrow2^n=2^4\\ \Rightarrow n=4\)
\(b,5^{n+2}-5^n=600\\ \Rightarrow5^n.5^2-5^n=600\\ \Rightarrow5^n\left(25-1\right)=600\\ \Rightarrow5^n.24=600\\ \Rightarrow5^n=25\\ \Rightarrow5^n=5^2\\ \Rightarrow n=2\)
\(a)2^n+2^{n+4}=272\)
\(2^n+2^n.2^4=272\)
\(2^n\left(1+2^4\right)=272\)
\(2^n.17=272\)
\(2^n=16\)
\(2^n=2^4\)
\(\Rightarrow n=4\)
\(b)\)\(5^{n+2}-5^n=600\)
\(5^n.5^2-5^n=600\)
\(5^n\left(5^2-1\right)=600\)
\(5^n.24=600\)
\(5^n=25\)
\(5^n=5^2\)
\(\Rightarrow n=2\)
Chúc bạn học tốt ❤️❤️
a: 3x=2y
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=10
nen Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\)
=>\(x=2\cdot2=4;y=2\cdot3=6\)
b: \(\dfrac{x-2}{y+3}=\dfrac{8}{12}=\dfrac{2}{3}\)
=>3x-6=2y+6
=>3x-2y=12
y-x=-4
=>x=y-(-4)=y+4
3x-2y=12
=>3(y+4)-2y=12
=>3y+12-2y=12
=>y=0
x=y+4=0+4=4
c: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+2y=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+2y}{2+5\cdot2}=\dfrac{12}{12}=1\)
=>x=2;y=5
\(a,27\cdot3^{n-1}=81\\ \Rightarrow3^{n-1}=81:27\\ \Rightarrow3^{n-1}=3\\ \Rightarrow n-1=1\\ \Rightarrow n=2\)
\(b,5\cdot5^{6-n}=625\\ \Rightarrow5^{6-n}=625:5\\ \Rightarrow5^{6-n}=125\\ \Rightarrow5^{6-n}=5^3\\ \Rightarrow6-n=3\\ \Rightarrow n=3\)
\(a,27\cdot3^{n-1}=81\\ =>3^3\cdot3^{n-1}=81\\ =>3^{n-1+3}=3^4\\ =>3^{n+2}=3^4\\ =>n+2=4\\ =>n=4-2\\ =>n=2\\ b,5\cdot5^{6-n}=625\\ =>5^{1+6-n}=5^4\\ =>5^{7-n}=5^4\\ =>7-n=4\\ =>n=7-4\\=>n=3\)
\(\dfrac{x}{3}=\dfrac{2}{5}\\ =>x=3\cdot\dfrac{2}{5}\\ =>x=\dfrac{3\cdot2}{5}\\ =>x=\dfrac{6}{5}\)
Vậy: ...
\(a,2^{n-1}=16\\ =>2^{n-1}=2^4\\ =>n-1=4\\ =>n=4+1\\ =>n=5\\ b,3^{21}:3^7:3\\ =3^{21-7-1}\\ =3^{14-1}\\ =3^{13}\)
\(a,9^{11}:9^2:9^3\\ =9^{11-2-3}\\ =9^6\\ =\left(3^2\right)^6\\ =3^{2\cdot6}\\ =3^{12}\\ b,3^{21}:3^7:3\\ =3^{21-7-1}\\ =3^{13}\)
a) (Sửa đề)
\(9^{11}:9^2:9:3\\
=\left(3^2\right)^{11}:\left(3^2\right)^2:3^2:3\\
=3^{22}:3^4:3^2:3\\
=3^{22}:\left(3^4.3^2.3\right)\\
=3^{22}:3^7\\
=3^{15}\)
b)
\(3^{21}:3^7:3\\
=3^{21}:\left(3^7.3\right)\\
=3^{21}:3^8\\
=3^{13}\)
Một số tự nhiên chia 5 có thể có các số dư là 0,1,2,3,4
- Nếu số dư là 0 là thương là 0 thì số đó là: \(5.0+0=0\)
- Nếu số dư là 1 và thường là 1 thì số đó là: \(5.1+1=6\)
- Nếu số dư là 2 và thương là 2 thì số đó là: \(5.2+2=12\)
- Nếu số dư là 3 và thương là 3 thì số đó là: \(5.3+3=18\)
- Nếu số dư là 4 và thương là 4 thì số đó là: \(5.4+4=24\)
Vậy các số tự nhiên thỏa mãn là: 0, 6, 12, 18, 24