Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a. Ta thấy: $AB\perp BC, CD\perp BC$
$\Rightarrow AB\parallel CD$
$BC\perp CD; DE\perp CD$
$\Rightarrow BC\parallel DE$
b.$AB\perp BC, BC\parallel DE\Rightarrow AB\perp DE$
Mà $DE\perp EF$
$\Rightarrow AB\parallel EF$
c.
Do $AB\parallel CD$ nên:
$\widehat{AIC}+\widehat{IAB}=180^0$ (2 góc trong cùng phía)
$\Rightarrow \widehat{AIC}=180^0-\widehat{IAB}=180^0-50^0=130^0$
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) C/m tam giác BAD = tam giác BED
xét tam giác BAD và tam giác BED, ta có
BD chung
BA = BE (gt)
ABD = DBE (BD tia phân giác góc ABC)
=>tam giác BAD = tam giác BED
=>AD=DE( cặp cạnh tương ứng)
b) chứng minh AF = EC
Xét tam giác ADF và tam giác EDC, ta có
AD = DE( cmt )
ADF = EDC( đối đỉnh )
DAF=DEC( = 900)
=>tam giác ADF = tam giác EDC
=>AF = EC ( cặp cạnh tương ứng)
=>ECA=AFE(cặp góc tương ứng )
c) C/M AE // FC
tam giác BEC có
BE = BA ( gt )
=> tam giác BEC cân cại B
=>BEA=BAE
ta có
ED = AD
DF = DC
=>ED+DF=AD+DC
=>EF=AC
xét tam giác ACF và tam giác EFC, ta có
EC = AF (cmt)
CF chung
EF=AC(cmt)
=>tam giác ACF= tam giác EFC
=>EFC=ACF(cặp góc tương ứng)
ta có:
ECA = AFE(cmt)
ACF=EFC(cmt)
=>ECA+ACF=AFE+EFC
=>ECF=AFC
tam giác BCF có
BCF=BFC(cmt)
=>tam giác BCF cân tại B
Ta có
tam giác BEC cân tại B
tam giác BCF cân tại B
=>BEA=BCF=BAE=BFC
mà BEA đồng vị BCF
=> AE//FC
cái câu c mình ko chắc đúng lắm nha.('v')
![](https://rs.olm.vn/images/avt/0.png?1311)
a \(\perp\) IJ
b \(\perp\) IJ
⇒ a//b (Vì trong cùng một mặt phẳng hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
\({}\)\(\widehat{K_2}\) + \(\widehat{L_1}\)= 1800 (hai góc trong cùng phía có tổng bằng 1800)
\({}\) \(\widehat{K_2}\) = 1800 - 750
\({}\) \(\widehat{K_2}\) = 1050
![](https://rs.olm.vn/images/avt/0.png?1311)
Các ký hiệu toán bị lỗi hết rồi bạn. Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left\{{}\begin{matrix}\left(x+5\right)^2\ge0\forall x\\\left|x-y+1\right|\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left(x+5\right)^2+\left|x-y+1\right|\ge0\forall x,y\)
\(\Rightarrow-\left[\left(x+5\right)^2+\left|x-y+1\right|\right]\le0\forall x,y\)
\(\Rightarrow-\left(x+5\right)^2-\left|x-y+1\right|\le0\forall x,y\)
\(\Rightarrow P=-\left(x+5\right)^2-\left|x-y+1\right|+2018\le2018\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x+5=0\\x-y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\y=x+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-4\end{matrix}\right.\)
Vậy \(Max_P=2018\) khi \(x=-5;y=-4\).
$Toru$
Lời giải:
Xét tam giác $OBD$, áp dụng BĐT tam giác thì:
$DB< OB+OD$
Mà $OB=OC$ nên: $OB+OD=OC+OD=CD$
$\Rightarrow DB< CD$ (đpcm)
Hình vẽ: