Giúp em câu này với ạ mn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Thay y=-2 vào (d), ta được:
\(\dfrac{1}{2}x+2=-2\)
=>\(\dfrac{x}{2}=-4\)
=>x=-8
Thay x=-8 và y=-2 vào y=ax+b, ta được:
\(a\cdot\left(-8\right)+b=-2\)
=>-8a+b=-2
=>8a-b=2(1)
Thay x=2 và y=-3 vào y=ax+b, ta được:
\(a\cdot2+b=-3\)
=>2a+b=-3(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}8a-b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a=-1\\8a-b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-\dfrac{1}{10}\\b=8a-2=-\dfrac{8}{10}-2=-\dfrac{28}{10}=-\dfrac{14}{5}\end{matrix}\right.\)
Vậy: (d'): \(y=-\dfrac{1}{10}x-\dfrac{14}{5}\)

\(x+2xy+3xyz=47\)
\(\Leftrightarrow x\left(1+2y+3yz\right)=47\)
TH1: \(\left\{{}\begin{matrix}x=1\\1+2y+3yz=47\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y\left(2+3z\right)=46\end{matrix}\right.\)
TH1.1: \(\left\{{}\begin{matrix}y=1\\2+3z=46\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=\dfrac{44}{3}\left(loại\right)\end{matrix}\right.\)
TH1.2: \(\left\{{}\begin{matrix}y=2\\2+3z=23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\z=7\end{matrix}\right.\) (nhận)
Vì \(z\inℕ^∗\) nên \(2+3z>2\). Do đó \(y< 23\) nên ta không xét các TH \(y=23,y=46\)
TH2: \(\left\{{}\begin{matrix}x=47\\y\left(2+3z\right)=1\end{matrix}\right.\). Khi đó \(y=2+3z=1\) \(\Rightarrow z=\dfrac{-1}{3}\), vô lý.
Vậy có một bộ số (x, y, z) duy nhất thỏa ycbt là \(\left(1,2,7\right)\)

Lời giải:
Đặt $x+2022=a$ thì PT trở thành:
\(\frac{a^2-a(a+2)+(a+2)^2}{a^2+a(a+2)+2(a+2)^2}=\frac{3}{2}\\ \Leftrightarrow \frac{a^2+2a+4}{4a^2+10a+8}=\frac{3}{2}\\ \Leftrightarrow \frac{a^2+2a+4}{2a^2+5a+4}=3\\ \Rightarrow a^2+2a+4=3(2a^2+5a+4)=6a^2+15a+12\\ \Leftrightarrow 5a^2+13a+8=0\\ \Leftrightarrow (a+1)(5a+8)=0\\ \Leftrightarrow a=-1\text{ hoặc } a=\frac{-8}{5}\\ \Leftrightarrow x+2022=-1 \text{ hoặc } x+2022=\frac{-8}{5}\\ \Leftrightarrow x=-2023 \text{ hoặc } x=-2023,6\)

Vì \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-1=0\) nên:
\(x_1^2-x_1-1=x_2^2-x_2-1=0\)
Đồng thời, theo định lý Vi-ét, ta có:
\(x_1+x_2=1;x_1x_2=-1\)
Do đó \(B=\left(x_1^4-x_1^2\right)+x_2^2-x_1\)
\(B=x_1^2\left(x_1^2-1\right)+x_2^2-x_1\)
\(B=\left(x_1+1\right)x_1+x_2^2-x_1\)
\(B=x_1^2+x_2^2\)
\(B=\left(x_1+x_2\right)^2-2x_1x_2\)
\(B=1^2-2\left(-1\right)\)
\(B=3\)

Lời giải:
a.
Vì $MC, MD$ là tiếp tuyến của $(O)$ nên $MC\perp OC, MD\perp OD$
$\Rightarrow \widehat{MCO}=\widehat{MDO}=90^0$
Tứ giác $MCOD$ có tổng 2 góc đối nhau $\widehat{MCO}+\widehat{MDO}=90^0+90^0=180^0$ nên $MCOD$ là tứ giác nội tiếp.
$\Rightarrow M,C,O,D$ cùng thuộc 1 đường tròn (1)
Mặt khác:
$K$ là trung điểm $AB$ nên $OK\perp AB$.
$\Rightarrow \widehat{MKO}=90^0$
Tứ giác $MCKO$ có $\widehat{MCO}=\widehat{MKO}=90^0$ và cùng nhìn cạnh $MO$ nên $MCKO$ là tứ giác nội tiếp.
$\Rightarrow M,C,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M,C,K,O,D$ cùng thuộc 1 đường tròn.
$\Rightarrow MCKD$ là tứ giác nội tiếp.
b.
Xét tam giác $MCA$ và $MBC$ có:
$\widehat{M}$ chung
$\widehat{MCA}=\widehat{MBC}$ (góc tạo bởi tt và dây cung bằng góc nt chắn cung đó)
$\Rightarrow \triangle MCA\sim \triangle MBC$ (g.g)
$\Rightarrow \frac{MC}{MA}=\frac{MB}{MC}\Rightarrow MC^2=MA.MB(3)$
Mặt khác:
Xét tam giác $MCN$ và $MKC$ có:
$\widehat{M}$ chung
$\widehat{MCN}=\widehat{MCD}=\frac{1}{2}\text{sđc(CD)}=\frac{1}{2}\widehat{COD}=\widehat{COM}=\widehat{MKC}$ (do $MCKO$ là tgnt)
$\Rightarrow \triangle MCN\sim \triangle MKC$ (g.g)
$\Rightarrow \frac{MC}{MK}=\frac{MN}{MC}$
$\Rightarrow MC^2=MK.MN(4)$
Từ $(3); (4)\Rightarrow MA.MB=MK.MN$

1.
Áp dụng định lý Viet:
$x_1+x_2=\frac{7}{2}$
$x_1x_2=\frac{-3}{2}$
Khi đó:
$B=x_1^2x_2+x_2^2x_1-3x_1x_2=x_1x_2(x_1+x_2)-3x_1x_2$
$=\frac{-3}{2}.\frac{7}{2}-3.\frac{-3}{2}=\frac{-3}{4}$
2.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m+1)^2-3(2m-1)\geq 0$
$\Leftrightarrow m^2-4m+4\geq 0$
$\Leftrightarrow (m-2)^2\geq 0\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=\frac{2(m+1)}{3}$
$x_1x_2=\frac{2m-1}{3}$
Để PT có 2 nghiệm $x_1,x_2<2$ thì:
\(\left\{\begin{matrix}
x_1+x_2< 4\\
(x_1-2)(x_2-2)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x_1+x_2<4\\
x_1x_2-2(x_1+x_2)+4>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{2(m+1)}{3}<4\\ \frac{2m-1}{3}-2.\frac{2(m+1)}{3}+4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<5\\ m< \frac{7}{2}\end{matrix}\right.\Leftrightarrow m< \frac{7}{2}\)
Vậy..........

Lời giải:
Xét số hạng tổng quát:
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sqrt{\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}}\\
=\sqrt{\frac{(n+1)^2}{n^2}-\frac{2n}{n^2}+\frac{1}{(n+1)^2}}\\
=\sqrt{\frac{(n+1)^2}{n^2}-\frac{2}{n}+\frac{1}{(n+1)^2}}\\
=\sqrt{(\frac{n+1}{n}-\frac{1}{n+1})^2}=\frac{n+1}{n}-\frac{1}{n+1}=1+\frac{1}{n}-\frac{1}{n+1}\)
Do đó:
\(C=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+....+1+\frac{1}{2018}-\frac{1}{2019}\\ =(1+1+...+1)+(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2018})-(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})\\ =2018+1-\frac{1}{2019}=2019-\frac{1}{2019}\)

1.
\(A=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\\ =\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\\ =\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)
2.
a. Với $m=-3$ thì pt trở thành:
$x^2+5x-6=0$
$\Leftrightarrow (x-1)(x+6)=0$
$\Leftrightarrow x-1=0$ hoặc $x+6=0$
$\Leftrightarrow x=1$ hoặc $x=-6$
b.
Ta thấy: $\Delta=(m-2)^2+24>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm pb $x_1,x_2$ với mọi $m$.
Áp dụng định lý Viet:
$x_1+x_2=m-2$
$x_1x_2=-6$
Khi đó:
$x_2^2-x_1x_2+(m-2)x_1=16$
$\Leftrightarrow x_2^2-x_1x_2+(x_1+x_2)x_1=16$
$\Leftrightarrow x_1^2+x_2^2=16$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=16$
$\Leftrightarrow (m-2)^2-2(-6)=16$
$\Leftrightarrow (m-2)^2=4$
$\Leftrightarrow m-2=\pm 2$
$\Leftrightarrow m=4$ hoặc $m=0$ (tm)
a:
b: Phương trình hoành độ giao điểm là:
\(2x^2=3x-1\)
=>\(2x^2-3x+1=0\)
=>(x-1)(2x-1)=0
=>\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Khi x=1 thì \(y=2\cdot x^2=2\cdot1^2=2\)
Khi x=1/2 thì \(y=2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy: (P) giao (Δ) tại A(1;2); B(1/2;1/2)
c: Phương trình hoành độ giao điểm là:
\(2x^2=-2\left(m-2\right)x-2m+6\)
=>\(2x^2+2\left(m-2\right)x+2m-6=0\)
=>\(x^2+\left(m-2\right)x+m-3=0\)
\(\text{Δ}=\left(m-2\right)^2-4\left(m-3\right)\)
\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì Δ>0
=>\(\left(m-4\right)^2>0\)
=>\(m-4\ne0\)
=>\(m\ne4\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-m+2\\x_1x_2=\dfrac{c}{a}=m-3\end{matrix}\right.\)
\(2x_1x_2-\left(x_1-x_2\right)^2=-1\)
=>\(2x_1x_2-\left[\left(x_1+x_2\right)^2-4x_1x_2\right]=-1\)
=>\(-\left(x_1+x_2\right)^2+6x_1x_2=-1\)
=>\(-\left(-m+2\right)^2+6\left(m-3\right)=-1\)
=>\(-m^2+4m-4+6m-18+1=0\)
=>\(-m^2+10m-21=0\)
=>\(\left(m-3\right)\left(m-7\right)=0\)
=>\(\left[{}\begin{matrix}m=3\left(nhận\right)\\m=7\left(nhận\right)\end{matrix}\right.\)