Một nhiệt lượng kế ban dầu chưa đựng gì, đồ vào nhiệt lượng kể 1 ca nước nóng thì thây nhiệt độ của nhiệt lượng kế tăng thêm 5°C. Sau đó lại đồ thêm 1 ca nước nóng nữa thì thẩy nhiệt độ của NLK tăng thêm 3° C. Hỏi nếu đổ tiếp vào NLK 3 ca nước nóng nói trên, thì nhiệt độ của NLK tăng thêm bao nhiêu độ nữa? Bỏ qua sự trao đổi nhiệt với môi trường, các ca nước nóng được coi là giống nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
Ta có: \(\widehat{BAE}+\widehat{BAC}+\widehat{CAF}=180^0\)
\(\Rightarrow\widehat{BAE}+90^0+\widehat{CAF}=180^0\)
\(\Rightarrow\widehat{BAE}+\widehat{CAF}=90^0\) (1)
Lại có \(BE\perp d\Rightarrow\Delta BAE\) vuông tại E
\(\Rightarrow\widehat{BAE}+\widehat{ABE}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{CAF}=\widehat{ABE}\)
Xét hai tam giác ABE và CAF có:
\(\left\{{}\begin{matrix}\widehat{ABE}=\widehat{CAF}\\\widehat{AEB}=\widehat{CFA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta ABE\sim\Delta CAF\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{CF}=\dfrac{BE}{AF}\Rightarrow AE.AF=BE.CF\)
b.
\(S_{ABC}=\dfrac{1}{2}AB.AC\Rightarrow AC=\dfrac{2S_{ABC}}{AB}=\dfrac{2.24}{6}=8\left(cm\right)\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{6.8}{\sqrt{6^2+8^2}}=4,8\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là \(\overline{xy}\) với x;y là các chữ số từ 0 tới 9, `x \ne 0`
Do tổng chữ số hàng chục và 2 lần chữ số hàng đơn vị là 12 nên ta có:
\(x+2y=12\) (1)
Sau khi thêm chữ số 0 vào giữa ta được số mới là: \(\overline{x0y}\)
Do số mới hơn số cũ 180 đơn vị nên ta có pt:
\(\overline{x0y}-\overline{xy}=180\Leftrightarrow100x+y-\left(10x+y\right)=180\)
\(\Leftrightarrow90x=180\)
\(\Leftrightarrow x=2\)
Thay vào (1) \(\Rightarrow2+2y=12\Rightarrow y=5\)
Vậy số đó là 25
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3y\right)\left(2x-y\right)=0\\6x^2+7xy-5y^2=0\end{matrix}\right.\)
TH1: \(2x-3y=0\Rightarrow y=\dfrac{2}{3}x\) thay vào pt dưới
\(\Rightarrow6x^2+7x.\left(\dfrac{2}{3}x\right)-5\left(\dfrac{2}{3}x\right)^2=0\)
\(\Leftrightarrow\dfrac{76}{9}x^2=0\Rightarrow x=0\Rightarrow y=0\)
TH2: \(2x-y=0\Rightarrow y=2x\)
Tương tự ta cũng được \(x=0;y=0\)
Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(0;0\right)\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}13x^2-39xy+13y^2=-13\\2x^2+xy+3y^2=13\end{matrix}\right.\)
Cộng vế với vế
\(\Rightarrow15x^2-38xy+16y^2=0\)
\(\Leftrightarrow\left(x-2y\right)\left(15x-8y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2y\\x=\dfrac{8}{15}y\end{matrix}\right.\)
Thay vào pt đầu:
- Với \(x=2y\Rightarrow4y^2-6y^2+y^2=-1\)
\(\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{matrix}\right.\)
- Với \(x=\dfrac{8}{15}y\)
\(\Rightarrow\left(\dfrac{8}{15}y\right)^2-3\left(\dfrac{8}{15}y\right).y+y^2=-1\)
\(\Leftrightarrow-\dfrac{71}{225}y^2=-1\Rightarrow y^2=\dfrac{225}{71}\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{15}{\sqrt{71}}\Rightarrow x=\dfrac{8}{\sqrt{71}}\\y=-\dfrac{15}{\sqrt{71}}\Rightarrow x=-\dfrac{8}{\sqrt{71}}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Em để ý thấy 2 số hạng đầu nếu đặt \(x\sqrt{x}\) làm nhân tử chung được: \(x\sqrt{x}\left(\sqrt{x}+1\right)\)
Giờ nó lại xuất hiện nhân tử \(\sqrt{x}+1\) với 2 số hạng cuối
Cứ vậy là ra thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề yêu cầu chứng minh hay tìm \(x;y\) vậy em nhỉ?
![](https://rs.olm.vn/images/avt/0.png?1311)
- Kiều Nguyệt Nga là một cô gái kiêu sa, dịu dàng, hiểu biết, và lòng trọng ân nghĩa. - Nhân vật này thể hiện lòng biết ơn, lòng chân thành, và tư tưởng đền ơn báo nghĩa. - Kiều Nguyệt Nga là hình mẫu của người con gái truyền thống, nết na, hiền thục, và có hiểu biết.