một đoàn xe du lịch của trường thcs , gồm 6 xe; tổng số học sinh tham quan là 330 em. Biết tổng số HS xe thứ nhất với số HS xe thứ sáu bằng tổng số HS xe thứ hai với HS xe thứ năm bằng tổng số HS xe thứ tư với số HS xe thứ ba. Hỏi số HS (có thể) trên từng xe?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi : `22` phút `=22/60=11/30` (giờ)
Gọi độ dài quãng đường AB là : `x` (km) (x>0)
+) Thời gian đi là : \(\dfrac{x}{15}\left(h\right)\)
+) Thời gian về là : \(\dfrac{x}{12}\left(h\right)\)
Mà thời gian về nhiều hơn thời gian đi `22` phút, nên ta có phương trình :
\(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{11}{30}\\ < =>\dfrac{15x}{180}-\dfrac{12x}{180}=\dfrac{66}{180}\\ =>15x-12x=66\\ < =>3x=66\\ < =>x=22\left(TMDK\right)\)
Vậy quãng đường AB dài 22km
a)
`2x+4=x-1`
`<=>2x-x=-4-1`
`<=>x=-5`
Vậy phương trình có tập nghiệm là : \(S=\left\{-5\right\}\)
b)
`2x(x-3)-5(x-3)=0`
`<=>(x-3)(2x-5)=0`
`=>x-3=0` hoặc `2x-5=0`
`<=>x=3` hoặc `x=5/2`
Vậy tập nghiệm phương trình là : \(S=\left\{3;\dfrac{5}{2}\right\}\)
c)
\(\dfrac{2x}{x+1}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\left(x\ne\left\{-1;4\right\}\right)\\ < =>\dfrac{2x\left(x-4\right)}{\left(x+1\right)\left(x-4\right)}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\\ =>2x\left(x-4\right)=x^2-x+8\\ < =>2x^2-8x=x^2-x+8\\ < =>2x^2-x^2-8x+x-8=0\\ < =>x^2-7x-8=0\\ < =>\left(x-8\right)\left(x+1\right)=0\\ =>\left[{}\begin{matrix}x=8\left(N\right)\\x=-1\left(L\right)\end{matrix}\right.\)
Vậy tập nghiệm phương trình là : \(S=\left\{8\right\}\)
`x^2-4x+y^2-6y+15=2`
`<=>x^2-4x+4+y^2-6y+9=0`
`<=>(x-2)^2+(y-3)^2=0`
`=>x-2=0` và `y-3=0`
`<=>x=2` và `y=3`
Ta có:
�2−4�+�2−6�+15=2⇔�2−4�+4+�2−6�+9=0⇔(�−2)2+(�−3)2=0⇔{(�−2)2=0(�−3)2=0⇔{�=2�=3⇔⇔⇔x2−4x+y2−6y+15=2x2−4x+4+y2−6y+9=0(x−2)2+(y−3)2=0{(x−2)2=0(y−3)2=0⇔{x=2y=3
(vì (�−2)2≥0(x−2)2≥0 với mọi �∈�x∈R, (�−3)2≥0(y−3)2≥0 với mọi �∈�y∈R).
Vậy �=2x=2, �=3y=3.
A A B C H D I
a) Vì tam giác ABC vuông tại A
Áp dụng định lý Pytago :
AB2 + AC2 = BC2
<=> 62 + 82 = BC2
<=> BC = 10
BD tia phân giác góc B nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\)(1)
mà AD + DC = AC = 8 (2)
Từ (1)(2) ta tìm được AD = 3 ; DC = 5
=> P = AD.DC = 3.5 = 15
b) Mà \(BD\cap AH=\left\{I\right\}\)
\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)(3)
Xét tam giác ABH và tam giác ABC có
\(\widehat{ABC}\) chung ; \(\widehat{AHB}=\widehat{BAC}=90^{\text{o}}\)
nên \(\Delta CBA\sim\Delta ABH\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\)( kết hợp (1);(3))
c) Tương tự dễ thấy
\(\Delta BIH\sim\Delta BDA\) (g-g)
=> \(\widehat{BDA}=\widehat{BIH}\)
lại có \(\widehat{BIH}=\widehat{AID}\) (đối đỉnh)
nên \(\widehat{BDA}=\widehat{AID}\) => Tam giác AID cân tại A
a) Xét tam giác ���ABC vuông tại �A:
��2=��2+��2BC2=AB2+AC2 (định lí Pythagoras)
⇔��2=62+82=100⇔��=10(��)⇔BC2=62+82=100⇔BC=10(cm).
Xét tam giác ���ABC phân giác ��BD có:
����=����⇔����+��=����+��BCAB=DCAD⇔BC+ABAB=DC+ADAD
����=����+��⇔��=3(��)ACAD=BC+ABAB⇔AD=3(cm)
suy ra ��=5(��)DC=5(cm).
b) Xét tam giác ���ABH phân giác ��BI có: ����=����IAIH=ABHB.
Xét △���△HBA và △���△ABC có:
���^=���^HBA=ABC (góc chung)
���^=���^(=90∘)BHA=BAC(=90∘)
suy ra △���∼△���△HBA∼△ABC (g.g).
Suy ra ����=����ABHB=BCBA
⇒����=����⇒BCBA=IAIH.
Mà ta lại có ����=����BCAB=DCAD nên ����=����IAIH=DCAD.
c) Ta có △���∼△���△ABD∼△HBI (g.g)
suy ra ����=����⇒��.��=��.��HBAB=BIBD⇒AB.BI=BD.HB.
���^=���^BDA=BIH (hai góc tương ứng)
mà ���^=���^BIH=AID (hai góc đối đỉnh)
suy ra ���^=���^BDA=AID
do đó tam giác ���AID cân tại �A.
Cái này anh thấy có vẻ chưa đúng đề lắm em ạ
Vì 440 không chia hết cho 3 nên sao bằng được
Chia số học sinh này thành 3 nhóm:
- Nhóm 1: Xe thứ nhất, xe thứ sáu
- Nhóm 2: Xe thứ hai, xe thứ năm
- Nhóm 3: Xe thứ ba, xe thứ tư
Vì theo dữ kiện đề bài, thì tổng số HS xe thứ nhất và xe thứ sáu = Tống số học sinh xe thứ hai và xe thứ 5 = Tổng số học sinh xe thứ ba và xe thứ tư
Vậy, mỗi nhóm có:
330:3= 110(học sinh)
Anh dự đoán trên mỗi xe du lịch này có số học sinh bằng nhau.
Vậy số HS (có thể) có trên từng xe là:
110:2= 55(học sinh)